A2C Agent playing AntBulletEnv-v0
This is a trained model of a A2C agent playing AntBulletEnv-v0 using the stable-baselines3 library.
Usage (with Stable-baselines3)
parameters
model = A2C(policy = "MlpPolicy",
env = env,
gae_lambda = 0.9,
gamma = 0.99,
learning_rate = 0.00096,
max_grad_norm = 0.5,
n_steps = 8,
vf_coef = 0.4,
ent_coef = 0.0,
tensorboard_log = "./tensorboard",
policy_kwargs=dict(
log_std_init=-2, ortho_init=False),
normalize_advantage=False,
use_rms_prop= True,
use_sde= True,
verbose=1)
...
- Downloads last month
- 1
Evaluation results
- mean_reward on AntBulletEnv-v0self-reported1218.38 +/- 203.74