hing-roberta-ours-run-5

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0980
  • Accuracy: 0.725
  • Precision: 0.6881
  • Recall: 0.6575
  • F1: 0.6651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9336 1.0 200 0.7394 0.675 0.6450 0.6509 0.6398
0.6924 2.0 400 0.9530 0.66 0.6285 0.5845 0.5551
0.4406 3.0 600 0.8914 0.68 0.6462 0.6527 0.6479
0.2493 4.0 800 1.7083 0.68 0.6441 0.6446 0.6426
0.1231 5.0 1000 1.9496 0.695 0.6570 0.6624 0.6591
0.0788 6.0 1200 2.5025 0.67 0.6209 0.6039 0.6011
0.0408 7.0 1400 2.2651 0.695 0.6594 0.6617 0.6517
0.0434 8.0 1600 2.4072 0.725 0.6941 0.6754 0.6710
0.0074 9.0 1800 2.7817 0.7 0.6535 0.6467 0.6488
0.023 10.0 2000 2.8578 0.7 0.6470 0.6353 0.6337
0.0151 11.0 2200 2.7783 0.695 0.6457 0.6373 0.6390
0.0108 12.0 2400 2.5953 0.695 0.6563 0.6586 0.6564
0.0192 13.0 2600 3.0715 0.705 0.6631 0.6326 0.6320
0.0149 14.0 2800 3.1048 0.715 0.6769 0.6450 0.6503
0.0205 15.0 3000 2.7812 0.71 0.6657 0.6538 0.6565
0.0024 16.0 3200 2.9304 0.72 0.6796 0.6537 0.6610
0.0033 17.0 3400 2.7170 0.73 0.6899 0.6760 0.6811
0.0056 18.0 3600 2.9693 0.72 0.6783 0.6560 0.6628
0.0015 19.0 3800 3.0943 0.72 0.6825 0.6541 0.6611
0.0017 20.0 4000 3.0980 0.725 0.6881 0.6575 0.6651

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SkyR/hing-roberta-ours-run-5

Finetuned
(9)
this model