File size: 2,835 Bytes
c075a14 915b89b c075a14 915b89b c075a14 915b89b c075a14 915b89b c075a14 915b89b c075a14 8191ff5 c075a14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language: ne
license: mit
tags:
- generated_from_trainer
- gpt2
- ne
datasets: Oscar
widget:
- text: "गर्मि मौसममा चिसो खाने"
---
# gpt2-medium-ne
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on Oscar Dataset.
## Model description
This model is trained on Oscar Nepali Dataset.
## How to use
You can use this model directly with a pipeline for text generation.
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='Someman/gpt2-medium-ne')
>>> set_seed(42)
>>> generator("उच्च अदालतले बिहीबार दिएको आदेशले", max_length=30, num_return_sequences=5)
[{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले महिनात्रि'},
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले बिहानैदे'},
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गिरिजाली'},
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गरेको प्रथम त'},
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले कुनै साथी'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
model = GPT2Model.from_pretrained('Someman/gpt2-medium-ne')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
model = TFGPT2Model.from_pretrained('Someman/gpt2-medium-ne')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
More information needed
## Training and evaluation data
Training data contains 197k Nepali sentences.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|