resnet-50-LongSleeveCleanedData
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0889
- Accuracy: 0.9788
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9906 | 0.99 | 143 | 1.0394 | 0.6134 |
0.7315 | 2.0 | 287 | 0.6790 | 0.7631 |
0.559 | 3.0 | 431 | 0.4735 | 0.8547 |
0.4905 | 4.0 | 575 | 0.3148 | 0.8983 |
0.3465 | 5.0 | 719 | 0.2225 | 0.9363 |
0.3372 | 6.0 | 863 | 0.1839 | 0.9486 |
0.3349 | 7.0 | 1007 | 0.1617 | 0.9587 |
0.3159 | 7.99 | 1150 | 0.1323 | 0.9620 |
0.2805 | 9.0 | 1294 | 0.1660 | 0.9587 |
0.2657 | 10.0 | 1438 | 0.1456 | 0.9531 |
0.2929 | 11.0 | 1582 | 0.1086 | 0.9698 |
0.2763 | 12.0 | 1726 | 0.0886 | 0.9765 |
0.2475 | 13.0 | 1870 | 0.1041 | 0.9732 |
0.2148 | 14.0 | 2014 | 0.0955 | 0.9777 |
0.209 | 14.99 | 2157 | 0.1061 | 0.9709 |
0.2408 | 16.0 | 2301 | 0.0784 | 0.9743 |
0.222 | 17.0 | 2445 | 0.0839 | 0.9698 |
0.208 | 18.0 | 2589 | 0.0873 | 0.9732 |
0.2214 | 19.0 | 2733 | 0.0889 | 0.9788 |
0.2375 | 19.88 | 2860 | 0.0864 | 0.9743 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.