|
--- |
|
license: cc-by-4.0 |
|
base_model: deepset/roberta-base-squad2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bankstatementmodelver7 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bankstatementmodelver7 |
|
|
|
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0745 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 11 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.0981 | 1.0 | 532 | 0.0672 | |
|
| 0.0425 | 2.0 | 1064 | 0.0565 | |
|
| 0.0376 | 3.0 | 1596 | 0.0546 | |
|
| 0.026 | 4.0 | 2128 | 0.0309 | |
|
| 0.0258 | 5.0 | 2660 | 0.0258 | |
|
| 0.0211 | 6.0 | 3192 | 0.0397 | |
|
| 0.0184 | 7.0 | 3724 | 0.0549 | |
|
| 0.0222 | 8.0 | 4256 | 0.0354 | |
|
| 0.0191 | 9.0 | 4788 | 0.0216 | |
|
| 0.0209 | 10.0 | 5320 | 0.0403 | |
|
| 0.0142 | 11.0 | 5852 | 0.0325 | |
|
| 0.0143 | 12.0 | 6384 | 0.0317 | |
|
| 0.0139 | 13.0 | 6916 | 0.0337 | |
|
| 0.0146 | 14.0 | 7448 | 0.0315 | |
|
| 0.0142 | 15.0 | 7980 | 0.0321 | |
|
| 0.0132 | 16.0 | 8512 | 0.0216 | |
|
| 0.0118 | 17.0 | 9044 | 0.0337 | |
|
| 0.0174 | 18.0 | 9576 | 0.0427 | |
|
| 0.0141 | 19.0 | 10108 | 0.0326 | |
|
| 0.0127 | 20.0 | 10640 | 0.0408 | |
|
| 0.014 | 21.0 | 11172 | 0.0355 | |
|
| 0.0098 | 22.0 | 11704 | 0.0300 | |
|
| 0.0116 | 23.0 | 12236 | 0.0220 | |
|
| 0.012 | 24.0 | 12768 | 0.0345 | |
|
| 0.0135 | 25.0 | 13300 | 0.0351 | |
|
| 0.01 | 26.0 | 13832 | 0.0282 | |
|
| 0.0091 | 27.0 | 14364 | 0.0291 | |
|
| 0.0094 | 28.0 | 14896 | 0.0512 | |
|
| 0.0116 | 29.0 | 15428 | 0.0278 | |
|
| 0.0077 | 30.0 | 15960 | 0.0447 | |
|
| 0.0096 | 31.0 | 16492 | 0.0338 | |
|
| 0.0097 | 32.0 | 17024 | 0.0302 | |
|
| 0.0098 | 33.0 | 17556 | 0.0279 | |
|
| 0.0093 | 34.0 | 18088 | 0.0260 | |
|
| 0.0099 | 35.0 | 18620 | 0.0432 | |
|
| 0.0104 | 36.0 | 19152 | 0.0297 | |
|
| 0.0083 | 37.0 | 19684 | 0.0288 | |
|
| 0.0076 | 38.0 | 20216 | 0.0404 | |
|
| 0.0114 | 39.0 | 20748 | 0.0366 | |
|
| 0.0073 | 40.0 | 21280 | 0.0381 | |
|
| 0.0102 | 41.0 | 21812 | 0.0473 | |
|
| 0.0082 | 42.0 | 22344 | 0.0386 | |
|
| 0.0064 | 43.0 | 22876 | 0.0172 | |
|
| 0.0081 | 44.0 | 23408 | 0.0626 | |
|
| 0.0075 | 45.0 | 23940 | 0.0410 | |
|
| 0.0077 | 46.0 | 24472 | 0.1468 | |
|
| 0.0095 | 47.0 | 25004 | 0.0436 | |
|
| 0.0068 | 48.0 | 25536 | 0.0494 | |
|
| 0.0055 | 49.0 | 26068 | 0.0484 | |
|
| 0.0051 | 50.0 | 26600 | 0.0438 | |
|
| 0.004 | 51.0 | 27132 | 0.0398 | |
|
| 0.0043 | 52.0 | 27664 | 0.0546 | |
|
| 0.005 | 53.0 | 28196 | 0.0509 | |
|
| 0.0033 | 54.0 | 28728 | 0.0510 | |
|
| 0.0054 | 55.0 | 29260 | 0.0554 | |
|
| 0.004 | 56.0 | 29792 | 0.0430 | |
|
| 0.0037 | 57.0 | 30324 | 0.0622 | |
|
| 0.0028 | 58.0 | 30856 | 0.0573 | |
|
| 0.0055 | 59.0 | 31388 | 0.0585 | |
|
| 0.002 | 60.0 | 31920 | 0.0508 | |
|
| 0.005 | 61.0 | 32452 | 0.0648 | |
|
| 0.0031 | 62.0 | 32984 | 0.0541 | |
|
| 0.0039 | 63.0 | 33516 | 0.0567 | |
|
| 0.0018 | 64.0 | 34048 | 0.0627 | |
|
| 0.002 | 65.0 | 34580 | 0.0445 | |
|
| 0.003 | 66.0 | 35112 | 0.0708 | |
|
| 0.0009 | 67.0 | 35644 | 0.0528 | |
|
| 0.0015 | 68.0 | 36176 | 0.0613 | |
|
| 0.0019 | 69.0 | 36708 | 0.0576 | |
|
| 0.0023 | 70.0 | 37240 | 0.0592 | |
|
| 0.0018 | 71.0 | 37772 | 0.0499 | |
|
| 0.0011 | 72.0 | 38304 | 0.0495 | |
|
| 0.0014 | 73.0 | 38836 | 0.0463 | |
|
| 0.0014 | 74.0 | 39368 | 0.0493 | |
|
| 0.0017 | 75.0 | 39900 | 0.0532 | |
|
| 0.0008 | 76.0 | 40432 | 0.0666 | |
|
| 0.0005 | 77.0 | 40964 | 0.0514 | |
|
| 0.002 | 78.0 | 41496 | 0.0702 | |
|
| 0.0026 | 79.0 | 42028 | 0.0426 | |
|
| 0.0001 | 80.0 | 42560 | 0.0481 | |
|
| 0.0019 | 81.0 | 43092 | 0.0551 | |
|
| 0.0001 | 82.0 | 43624 | 0.0550 | |
|
| 0.0 | 83.0 | 44156 | 0.0613 | |
|
| 0.0012 | 84.0 | 44688 | 0.0568 | |
|
| 0.0006 | 85.0 | 45220 | 0.0602 | |
|
| 0.0001 | 86.0 | 45752 | 0.0623 | |
|
| 0.0004 | 87.0 | 46284 | 0.0522 | |
|
| 0.0007 | 88.0 | 46816 | 0.0647 | |
|
| 0.0001 | 89.0 | 47348 | 0.0593 | |
|
| 0.0002 | 90.0 | 47880 | 0.0552 | |
|
| 0.0016 | 91.0 | 48412 | 0.0475 | |
|
| 0.0005 | 92.0 | 48944 | 0.0531 | |
|
| 0.0011 | 93.0 | 49476 | 0.0574 | |
|
| 0.0 | 94.0 | 50008 | 0.0591 | |
|
| 0.0 | 95.0 | 50540 | 0.0606 | |
|
| 0.0005 | 96.0 | 51072 | 0.0599 | |
|
| 0.0018 | 97.0 | 51604 | 0.0505 | |
|
| 0.0 | 98.0 | 52136 | 0.0568 | |
|
| 0.0011 | 99.0 | 52668 | 0.0692 | |
|
| 0.0 | 100.0 | 53200 | 0.0702 | |
|
| 0.0002 | 101.0 | 53732 | 0.0743 | |
|
| 0.0 | 102.0 | 54264 | 0.0822 | |
|
| 0.0007 | 103.0 | 54796 | 0.0905 | |
|
| 0.0001 | 104.0 | 55328 | 0.0822 | |
|
| 0.0005 | 105.0 | 55860 | 0.0792 | |
|
| 0.0004 | 106.0 | 56392 | 0.0683 | |
|
| 0.0018 | 107.0 | 56924 | 0.0526 | |
|
| 0.0029 | 108.0 | 57456 | 0.0600 | |
|
| 0.0005 | 109.0 | 57988 | 0.0631 | |
|
| 0.0 | 110.0 | 58520 | 0.0659 | |
|
| 0.0006 | 111.0 | 59052 | 0.0663 | |
|
| 0.0 | 112.0 | 59584 | 0.0681 | |
|
| 0.0012 | 113.0 | 60116 | 0.0537 | |
|
| 0.0 | 114.0 | 60648 | 0.0558 | |
|
| 0.0 | 115.0 | 61180 | 0.0574 | |
|
| 0.0006 | 116.0 | 61712 | 0.0563 | |
|
| 0.0 | 117.0 | 62244 | 0.0479 | |
|
| 0.0015 | 118.0 | 62776 | 0.0584 | |
|
| 0.0 | 119.0 | 63308 | 0.0606 | |
|
| 0.0 | 120.0 | 63840 | 0.0624 | |
|
| 0.0006 | 121.0 | 64372 | 0.0655 | |
|
| 0.0003 | 122.0 | 64904 | 0.0688 | |
|
| 0.0 | 123.0 | 65436 | 0.0790 | |
|
| 0.0001 | 124.0 | 65968 | 0.0713 | |
|
| 0.0 | 125.0 | 66500 | 0.0721 | |
|
| 0.0006 | 126.0 | 67032 | 0.0689 | |
|
| 0.0 | 127.0 | 67564 | 0.0679 | |
|
| 0.0 | 128.0 | 68096 | 0.0693 | |
|
| 0.0005 | 129.0 | 68628 | 0.0688 | |
|
| 0.0 | 130.0 | 69160 | 0.0696 | |
|
| 0.0 | 131.0 | 69692 | 0.0702 | |
|
| 0.0 | 132.0 | 70224 | 0.0715 | |
|
| 0.0 | 133.0 | 70756 | 0.0727 | |
|
| 0.0 | 134.0 | 71288 | 0.0708 | |
|
| 0.0 | 135.0 | 71820 | 0.0715 | |
|
| 0.0 | 136.0 | 72352 | 0.0724 | |
|
| 0.0 | 137.0 | 72884 | 0.0762 | |
|
| 0.0 | 138.0 | 73416 | 0.0797 | |
|
| 0.0 | 139.0 | 73948 | 0.0800 | |
|
| 0.0 | 140.0 | 74480 | 0.0808 | |
|
| 0.0 | 141.0 | 75012 | 0.0834 | |
|
| 0.0 | 142.0 | 75544 | 0.0833 | |
|
| 0.0014 | 143.0 | 76076 | 0.0782 | |
|
| 0.0 | 144.0 | 76608 | 0.0748 | |
|
| 0.0 | 145.0 | 77140 | 0.0749 | |
|
| 0.0 | 146.0 | 77672 | 0.0751 | |
|
| 0.0 | 147.0 | 78204 | 0.0738 | |
|
| 0.0 | 148.0 | 78736 | 0.0744 | |
|
| 0.0 | 149.0 | 79268 | 0.0744 | |
|
| 0.0 | 150.0 | 79800 | 0.0745 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Tokenizers 0.13.3 |
|
|