metadata
base_model: ibm-granite/granite-3.0-8b-instruct
library_name: transformers
fine_tuning: LORA
datasets: hawky-fb-marketing-hooks
license: other
tags:
- llama-cpp
- ibm
- ibm-granite
- ibm-granite-8B
- GGUF
approach:
- Data set preperation
- RAG setup for Fetching Marketing Data (Meta and Google)
- Create KM for the dataset too
Sri-Vigneshwar-DJ/ibm-granite-3.0-8b-GGUF
This model was converted to GGUF format from granite-3.0-8b-instruct
using llama.cpp
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux) from []
brew install llama.cpp or !git clone https://github.com/ggerganov/llama.cpp.git
Invoke the llama.cpp server or the CLI.
or
CLI:
! /content/llama.cpp/llama-cli -m ./quantized_model/FP16.gguf/ibm-granite-3.0-8b-GGUF -n 90 --repeat_penalty 1.0 --color -i -r "User:" -f /content/llama.cpp/prompts/chat-with-bob.txt
or
llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-8b-GGUF --hf-file FP16.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-8b-GGUF --hf-file FP8.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag or ''!make GGML_OPENBLAS=1' along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
or
!make GGML_OPENBLAS=1
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-8b-GGUF --hf-file FP8.gguf -p "Hi, Generate a detailed insight on 2024 Meta Campaigns"
or
./llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-8b-GGUF --hf-file sFP8.gguf -c 2048