|
--- |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Mistral-7b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7b |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1919 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 2048 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 12.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.7591 | 0.64 | 25 | 4.9279 | |
|
| 2.0299 | 1.28 | 50 | 0.8182 | |
|
| 0.6558 | 1.92 | 75 | 0.5750 | |
|
| 0.4785 | 2.56 | 100 | 0.3823 | |
|
| 0.3837 | 3.2 | 125 | 0.2941 | |
|
| 0.3073 | 3.84 | 150 | 0.2318 | |
|
| 0.2119 | 4.48 | 175 | 0.1871 | |
|
| 0.1632 | 5.12 | 200 | 0.1595 | |
|
| 0.1297 | 5.76 | 225 | 0.1487 | |
|
| 0.1035 | 6.39 | 250 | 0.1476 | |
|
| 0.0856 | 7.03 | 275 | 0.1427 | |
|
| 0.0574 | 7.67 | 300 | 0.1482 | |
|
| 0.0448 | 8.31 | 325 | 0.1552 | |
|
| 0.0318 | 8.95 | 350 | 0.1562 | |
|
| 0.0196 | 9.59 | 375 | 0.1709 | |
|
| 0.0146 | 10.23 | 400 | 0.1793 | |
|
| 0.0084 | 10.87 | 425 | 0.1854 | |
|
| 0.0058 | 11.51 | 450 | 0.1919 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|