metadata
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- DopeorNope/SOLARC-M-10.7B
- maywell/PiVoT-10.7B-Mistral-v0.2-RP
- kyujinpy/Sakura-SOLAR-Instruct
- jeonsworld/CarbonVillain-en-10.7B-v1
Lumosia-MoE-4x10.7
"Lumosia" was selected as its a MoE of Multiple SOLAR Merges so it really "Lights the way".... its 3am.
This is a very experimantal model. its a MoE of all good performing Solar models (based off of personal experiance not open leaderboard),
Why? Dunno whated to see what would happen
context is maybe 16k?
Chat-instruct breaks the model at the moment, not really sure why, even tho it will follow instructions.
Waiting on fix for quants of FrankenMoE
Template:
### System:
### USER:{prompt}
### Assistant:
Settings:
Temp: 1.0
min-p: 0.02-0.1
Lumosia-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models:
- DopeorNope/SOLARC-M-10.7B
- maywell/PiVoT-10.7B-Mistral-v0.2-RP
- kyujinpy/Sakura-SOLAR-Instruct
- jeonsworld/CarbonVillain-en-10.7B-v1
Evals:
- Pending
Examples:
Example 1:
User:
Hello lumi, what is the meaning of life
in around 100 words.
Lumosia:
The meaning of life can vary greatly
depending on individual beliefs,
values, and experiences. One common
perspective suggests that the primary
purpose of life is to seek happiness,
fulfillment, and personal growth
through relationships
accomplishments, and spiritual
awareness. Living with integrity.
compassion, and gratitude while
making a positive impact on others
and the world around us can also
contribute to finding meaning in life
UItimately, the meaning of life is
subjective and unique to each
individual, who must define it for
themselves through exploration
reflection, and personal choice.
Example 2:
User:
Explain a MoE (Mixture of Experts) in
around 100 words
Lumosia:
A MoE, short for Mixture of Experts, is
a machine learning technique utilized
in ensemble learning. It involves
combining multiple specialist models
(experts) to optimize predictive
performance. Each expert focuses on
a subset of the input features or data
domains, making them specialized in
particular areas. Through a weighting
mechanism, like Gaussian Mixture
Model, the predictions of experts are
blended to produce a final result. MoE
models demonstrate effectiveness in
handling complex or ambiguous
inputs where a single model might
struggle. They are commonly used in
natural language processing.
computer vision, and speech synthesis.
🧩 Configuration
yamlbase_model: DopeorNope/SOLARC-M-10.7B
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: DopeorNope/SOLARC-M-10.7B
positive_prompts: [""]
- source_model: maywell/PiVoT-10.7B-Mistral-v0.2-RP
positive_prompts: [""]
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts: [""]
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1
positive_prompts: [""]
💻 Usage
python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Steelskull/Lumosia-MoE-4x10.7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])