|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- DopeorNope/SOLARC-M-10.7B |
|
- maywell/PiVoT-10.7B-Mistral-v0.2-RP |
|
- kyujinpy/Sakura-SOLAR-Instruct |
|
- jeonsworld/CarbonVillain-en-10.7B-v1 |
|
--- |
|
|
|
# Lumosia-MoE-4x10.7 |
|
|
|
"Lumosia" was selected as its a MoE of Multiple SOLAR Merges so it really "Lights the way".... its 3am. |
|
|
|
This is a very experimantal model. its a MoE of all good performing Solar models (based off of personal experiance not open leaderboard), |
|
|
|
Why? Dunno whated to see what would happen |
|
|
|
context is maybe 32k? waiting for GGUF to upload. |
|
|
|
|
|
Template: |
|
``` |
|
### System: |
|
|
|
### USER:{prompt} |
|
|
|
### Assistant: |
|
``` |
|
|
|
Lumosia-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models: |
|
* [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B) |
|
* [maywell/PiVoT-10.7B-Mistral-v0.2-RP](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2-RP) |
|
* [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) |
|
* [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1) |
|
|
|
## Evals: |
|
|
|
|
|
* Pending |
|
|
|
|
|
## 🧩 Configuration |
|
|
|
``` |
|
yamlbase_model: DopeorNope/SOLARC-M-10.7B |
|
gate_mode: hidden |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: DopeorNope/SOLARC-M-10.7B |
|
positive_prompts: [""] |
|
- source_model: maywell/PiVoT-10.7B-Mistral-v0.2-RP |
|
positive_prompts: [""] |
|
- source_model: kyujinpy/Sakura-SOLAR-Instruct |
|
positive_prompts: [""] |
|
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1 |
|
positive_prompts: [""] |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
``` |
|
python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Steelskull/Lumosia-MoE-4x10.7" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |