distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0362
- Accuracy: {'accuracy': 0.866}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.5633 | {'accuracy': 0.822} |
0.4445 | 2.0 | 500 | 0.5395 | {'accuracy': 0.85} |
0.4445 | 3.0 | 750 | 0.7314 | {'accuracy': 0.844} |
0.3104 | 4.0 | 1000 | 0.6346 | {'accuracy': 0.867} |
0.3104 | 5.0 | 1250 | 0.7909 | {'accuracy': 0.854} |
0.1899 | 6.0 | 1500 | 0.8945 | {'accuracy': 0.872} |
0.1899 | 7.0 | 1750 | 0.9758 | {'accuracy': 0.866} |
0.0805 | 8.0 | 2000 | 1.0404 | {'accuracy': 0.865} |
0.0805 | 9.0 | 2250 | 1.0483 | {'accuracy': 0.861} |
0.0581 | 10.0 | 2500 | 1.0362 | {'accuracy': 0.866} |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for Sube126/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased