Sultannn/bert-base-ft-ner-xtreme-id
This model is a fine-tuned version of bert-base-multilingual-uncased on an xtreme PAN-X.id for NER downstream task.
Details of the downstream task (NER) - Dataset
Dataset | # Examples |
---|---|
Train | 35 K |
Validation | 5 K |
Metrics on evaluation set
Metrics | Score |
---|---|
Accuracy | 97.18 |
F1 | 93.26 |
Precision | 92.36 |
Recall | 94.18 |
Training hyperparameters
- Optimizer = AdamW
- LearningRate = 4e-5
- WeightDecay = 1e-2
- Warmup = 500
Example of usage
# pipeline example
from transformers import pipeline
model_checkpoint = "Sultannn/bert-base-ft-ner-xtreme-id"
token_classifier = pipeline(
"token-classification", model=model_checkpoint, aggregation_strategy="simple")
text = "nama saya Tono saya bekerja di Facebook dan tinggal di Jawa"
token_classifier(text)
Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
Made with ♥ in 🌏
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.