SungWei's picture
update model card README.md
ca8552c
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: my_awesome_billsum_model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          config: default
          split: ca_test
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.2033

my_awesome_billsum_model

This model is a fine-tuned version of t5-base on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6638
  • Rouge1: 0.2033
  • Rouge2: 0.1149
  • Rougel: 0.1762
  • Rougelsum: 0.1759
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 248 1.9584 0.1999 0.1073 0.1716 0.1717 19.0
No log 2.0 496 1.8621 0.195 0.1045 0.1685 0.1682 19.0
2.2512 3.0 744 1.8095 0.1973 0.1109 0.1728 0.1727 19.0
2.2512 4.0 992 1.7797 0.1989 0.1102 0.1724 0.1724 19.0
1.8144 5.0 1240 1.7505 0.1997 0.112 0.1735 0.1736 19.0
1.8144 6.0 1488 1.7308 0.2003 0.1134 0.1746 0.1744 19.0
1.6898 7.0 1736 1.7145 0.199 0.1114 0.1732 0.173 19.0
1.6898 8.0 1984 1.7083 0.1977 0.1106 0.1718 0.1716 19.0
1.5997 9.0 2232 1.6983 0.2014 0.1127 0.175 0.175 19.0
1.5997 10.0 2480 1.6923 0.2014 0.1153 0.1754 0.1753 19.0
1.5403 11.0 2728 1.6826 0.2009 0.1134 0.1752 0.1751 19.0
1.5403 12.0 2976 1.6768 0.2003 0.1125 0.1745 0.1744 19.0
1.491 13.0 3224 1.6722 0.2016 0.1146 0.1756 0.1755 19.0
1.491 14.0 3472 1.6750 0.2039 0.1164 0.1773 0.177 19.0
1.4496 15.0 3720 1.6679 0.2023 0.1147 0.1765 0.1763 19.0
1.4496 16.0 3968 1.6677 0.2032 0.1148 0.177 0.1768 19.0
1.4241 17.0 4216 1.6640 0.2021 0.1135 0.1752 0.175 19.0
1.4241 18.0 4464 1.6645 0.2027 0.1155 0.1766 0.1764 19.0
1.4025 19.0 4712 1.6632 0.2028 0.1149 0.1761 0.1757 19.0
1.4025 20.0 4960 1.6638 0.2033 0.1149 0.1762 0.1759 19.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.1
  • Tokenizers 0.13.3