Suparious's picture
Update README.md
bbb2972 verified
|
raw
history blame
3.57 kB
metadata
license: other
tags:
  - axolotl
  - generated_from_trainer
  - Mistral
  - instruct
  - finetune
  - chatml
  - gpt4
  - synthetic data
  - science
  - physics
  - chemistry
  - biology
  - math
base_model: alpindale/Mistral-7B-v0.2-hf
datasets:
  - allenai/ai2_arc
  - camel-ai/physics
  - camel-ai/chemistry
  - camel-ai/biology
  - camel-ai/math
  - metaeval/reclor
  - openbookqa
  - mandyyyyii/scibench
  - derek-thomas/ScienceQA
  - TIGER-Lab/ScienceEval
  - jondurbin/airoboros-3.2
  - LDJnr/Capybara
  - Cot-Alpaca-GPT4-From-OpenHermes-2.5
  - STEM-AI-mtl/Electrical-engineering
  - knowrohit07/saraswati-stem
  - sablo/oasst2_curated
  - lmsys/lmsys-chat-1m
  - TIGER-Lab/MathInstruct
  - bigbio/med_qa
  - meta-math/MetaMathQA-40K
  - openbookqa
  - piqa
  - metaeval/reclor
  - derek-thomas/ScienceQA
  - scibench
  - sciq
  - Open-Orca/SlimOrca
  - migtissera/Synthia-v1.3
  - TIGER-Lab/ScienceEval
  - allenai/WildChat
  - microsoft/orca-math-word-problems-200k
  - openchat/openchat_sharegpt4_dataset
  - teknium/GPTeacher-General-Instruct
  - m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: suparious
pipeline_tag: text-generation

Exllama v2 Quantizations of Weyaxi/Einstein-v5-v0.2-7B

Using turboderp's ExLlamaV2 v0.0.16 for quantization.

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: Weyaxi/Einstein-v5-v0.2-7B

Model Size: 7b

Branch Bits lm_head bits Dataset Size Description
8_0 8.0 8.0 Default 9.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 Default 8.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 Default 7.4 GB Slightly lower perplexity vs 6.5.
4_0 4.0 6.0 Default 6.5 GB Just under GPTQ equivalent bits per weight.

All VRAM requirements estimated from 16k context. For 32k context add ~2 GB.

4.0 bits per weight

5.0 bits per weight

6.5 bits per weight

8.0 bits per weight

Download instructions

With git:

git clone --single-branch --branch 4_0 https://huggingface.co/suparious/Einstein-v5-v0.2-7B-exl2

With huggingface hub (credit to TheBloke and bartowski for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called Einstein-v5-v0.2-7B-exl2:

mkdir Einstein-v5-v0.2-7B-exl2
huggingface-cli download suparious/Einstein-v5-v0.2-7B-exl2 --local-dir Einstein-v5-v0.2-7B-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir Einstein-v5-v0.2-7B-exl2-6_5
huggingface-cli download suparious/Einstein-v5-v0.2-7B-exl2 --revision 6_5 --local-dir Einstein-v5-v0.2-7B-exl2-6_5 --local-dir-use-symlinks False