Text Generation
Transformers
PyTorch
Safetensors
English
llama
text-generation-inference
Inference Endpoints
OpenBezoar-SFT / README.md
Sachith Gunasekara
Update README.md
797381e verified
|
raw
history blame
3.56 kB
metadata
license: apache-2.0
datasets:
  - SurgeGlobal/LaMini
  - SurgeGlobal/Orca
  - SurgeGlobal/Evol-Instruct
language:
  - en

Model Card for OpenBezoar-SFT

Summary

The OpenBezoar-SFT is an instruction-tuned version of Open LlaMA 3B v2 with Q-LoRA on three of our custom datasets synthetically generated from h2ogpt-gm-oasst1-en-2048-falcon-40b-v2.

Model Details

Model Description

OpenBezoar-SFT is built upon the Open Llama 3B v2 architecture and has been fine-tuned to improve its instruction-following abilities.

Model Sources

  • Repository: [More Information Needed]
  • Paper : [More Information Needed]

Instruction Format

We follow a modified version of the Alpaca prompt template as shown below. It is important to utilize this template in order to obtain best responses for instruction related tasks.

### System:
Below is an instruction that describes a task, optionally paired with an input that provides further context following that instruction. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Notice that no end-of-sentence (eos) token is being appended.

Note: The system prompt shown in the following figure is the one that the model has been trained on most of the time. However, you may attempt to use any other system prompt that is available in the Orca scheme.

Usage

from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoModelForSeq2SeqLM

checkpoint =  "SurgeGlobal/OpenBezoar-SFT"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForCausalLM.from_pretrained(
    checkpoint,
    load_in_4bit=True, # optionally for low resource environments
    device_map="auto"
)

prompt =  """### System:
Below is an instruction that describes a task, optionally paired with an input that provides further context following that instruction. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:""".format(
    instruction="What is the world state in the year 1597."
)

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=1024, do_sample=True)

print(tokenizer.decode(outputs[0]))

Evaluations

Refer to our self-reported evaluations in our paper (Section 4).

Limitations

  • The model might not consistently show improved abilities to follow instructions, and it could respond inappropriately or get stuck in loops.
  • This model is not aligned to human preferences and therefore it may generate harmful and uncensored content.
  • Caution is urged against relying on this model for production or adjacent use-cases.

Citation

If you find our work useful, please cite our paper as follows:

[More Information Needed]

Model Authors

Chandeepa Dissanayake, Lahiru Lowe, Sachith Gunasekara, and Yasiru Ratnayake