Edit model card

LayoutLM_Invoice6

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0219
  • Ax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Endor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Nvoice Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Otal Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
  • Ustomer Address: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11}
  • Ustomer Name: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
  • Overall Precision: 0.9846
  • Overall Recall: 0.9697
  • Overall F1: 0.9771
  • Overall Accuracy: 0.9939

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Ax Amount Endor Name Nvoice Number Otal Amount Ustomer Address Ustomer Name Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8763 6.25 50 0.2290 {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} {'precision': 0.8181818181818182, 'recall': 0.8181818181818182, 'f1': 0.8181818181818182, 'number': 11} {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11} {'precision': 0.5454545454545454, 'recall': 0.5454545454545454, 'f1': 0.5454545454545454, 'number': 11} {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} {'precision': 0.75, 'recall': 0.8181818181818182, 'f1': 0.7826086956521738, 'number': 11} 0.7903 0.7424 0.7656 0.9666
0.1315 12.5 100 0.0312 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} 0.9701 0.9848 0.9774 0.9970
0.0239 18.75 150 0.0371 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0098 25.0 200 0.0450 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0085 31.25 250 0.0360 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939
0.0065 37.5 300 0.0219 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} 0.9846 0.9697 0.9771 0.9939

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.2.0+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Szczotar93/LayoutLM_Invoice6

Finetuned
(135)
this model