Layoutlm_Inkaso_2 / README.md
Szczotar93's picture
End of training
fe3447a verified
|
raw
history blame
9.51 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - layoutlmv3
model-index:
  - name: Layoutlm_Inkaso_2
    results: []

Layoutlm_Inkaso_2

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1191
  • Creditor address: {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53}
  • Creditor name: {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}
  • Creditor proxy: {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34}
  • Debtor address: {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52}
  • Debtor name: {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}
  • Doc id: {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}
  • Title: {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56}
  • Overall Precision: 0.9217
  • Overall Recall: 0.9056
  • Overall F1: 0.9136
  • Overall Accuracy: 0.9755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Creditor address Creditor name Creditor proxy Debtor address Debtor name Doc id Title Overall Precision Overall Recall Overall F1 Overall Accuracy
1.2524 6.6667 20 0.6528 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 53} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 34} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 52} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} 0.0 0.0 0.0 0.8405
0.4371 13.3333 40 0.2820 {'precision': 0.7457627118644068, 'recall': 0.8301886792452831, 'f1': 0.7857142857142858, 'number': 53} {'precision': 0.868421052631579, 'recall': 0.9428571428571428, 'f1': 0.904109589041096, 'number': 35} {'precision': 0.9166666666666666, 'recall': 0.3235294117647059, 'f1': 0.4782608695652174, 'number': 34} {'precision': 0.6222222222222222, 'recall': 0.5384615384615384, 'f1': 0.577319587628866, 'number': 52} {'precision': 0.9375, 'recall': 0.375, 'f1': 0.5357142857142857, 'number': 40} {'precision': 0.8, 'recall': 0.5, 'f1': 0.6153846153846154, 'number': 16} {'precision': 0.8235294117647058, 'recall': 0.75, 'f1': 0.7850467289719627, 'number': 56} 0.7835 0.6329 0.7002 0.9320
0.1154 20.0 60 0.1217 {'precision': 1.0, 'recall': 0.9433962264150944, 'f1': 0.970873786407767, 'number': 53} {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} {'precision': 0.7666666666666667, 'recall': 0.6764705882352942, 'f1': 0.71875, 'number': 34} {'precision': 0.8947368421052632, 'recall': 0.9807692307692307, 'f1': 0.9357798165137614, 'number': 52} {'precision': 0.9142857142857143, 'recall': 0.8, 'f1': 0.8533333333333333, 'number': 40} {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} {'precision': 0.9565217391304348, 'recall': 0.7857142857142857, 'f1': 0.8627450980392156, 'number': 56} 0.9111 0.8601 0.8849 0.9682
0.0263 26.6667 80 0.1306 {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} {'precision': 0.7307692307692307, 'recall': 0.5588235294117647, 'f1': 0.6333333333333334, 'number': 34} {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 56} 0.9323 0.8671 0.8986 0.9704
0.0113 33.3333 100 0.1161 {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34} {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52} {'precision': 0.9285714285714286, 'recall': 0.975, 'f1': 0.951219512195122, 'number': 40} {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 56} 0.9281 0.9021 0.9149 0.9755
0.0079 40.0 120 0.1306 {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} {'precision': 0.7272727272727273, 'recall': 0.7058823529411765, 'f1': 0.7164179104477613, 'number': 34} {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52} {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} {'precision': 1.0, 'recall': 0.7678571428571429, 'f1': 0.8686868686868687, 'number': 56} 0.9299 0.8811 0.9048 0.9727
0.0064 46.6667 140 0.1191 {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53} {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34} {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56} 0.9217 0.9056 0.9136 0.9755

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1