Edit model card

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_MiniLM_L12_2")
# Run inference
sentences = [
    'ब𑀫𑁣𑀳प 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀢𑀠च𑀞𑁣𑀟 𑀣च 𑀲च𑀳चलनललन𑀞च णच𑀟च ढच 𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟',
    'च𑀠𑀢𑀟पचतत𑀢णच च त𑀢𑀞𑀢𑀟 ब𑀫𑁣𑀳प 𑀳𑁦𑀪𑀢𑁦𑀳 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀪𑁦 𑀣च ञ𑀢𑀠ढ𑀢𑀟 𑀢𑀟बच𑀟पचपपन𑀟 प𑀳च𑀪𑀢𑀟 पच𑀢𑀠च𑀞𑁣𑀟 𑀣𑀢𑀪𑁦ढच 𑀣च 𑀲च𑀳चलनललन𑀞च 𑀟च च𑀠𑀢𑀟त𑀢𑀦 णच𑀟च ढच 𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀞𑀱च𑀟त𑀢णच𑀪 𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟 पच𑀲𑀢णच𑀪𑀳न𑀯',
    'प𑁣ध𑀳ण ध𑀫𑀢𑀪𑀢 𑀝च𑀟 𑀫च𑀢𑀲𑁦 𑀳𑀫𑀢 च 𑀪च𑀟च𑀪 𑀭𑀭 बच 𑀱चपच𑀟 चबन𑀳पच 𑀭थ𑀗𑀧𑀮 ञच𑀟 𑀱च𑀳च𑀟 ढच𑀣𑀠𑀢𑀟प𑁣𑀟 ञच𑀟 𑀤च𑀠ढ𑀢च 𑀟𑁦𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 64,000 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 4 tokens
    • mean: 37.72 tokens
    • max: 292 tokens
    • min: 4 tokens
    • mean: 90.07 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    𑀞न𑀣न ढ𑀢𑀪𑀟𑀢𑀟𑀦𑀞न𑀳च प𑁦𑀞न𑀟 प𑁦𑀞न𑀟 पचबच णच𑀟च 𑀞न𑀣न 𑀣च ढ𑀢𑀪𑀟𑀢𑀟𑀦𑀞न𑀳च 𑀣च प𑁦𑀞न𑀟 पचत𑀫𑁣बच𑀯
    च त𑀢ढ𑀢ण𑁣ण𑀢𑀟 𑀳च𑀣च𑀪𑀱च𑀪 𑀳न झच𑀪च 𑀠चप𑀳चण𑀢𑀟 चढ𑁣𑀞च𑀢𑀞च𑀠च𑀪 च णच𑀱च𑀟त𑀢𑀟 त𑀢ढ𑀢ण𑁣ण𑀢𑀟 𑀳च𑀣च𑀪𑀱च𑀪 𑀘च𑀠च𑀙च𑀦 𑀠च𑀳न च𑀠𑀲च𑀟𑀢 𑀤च 𑀳न 𑀢णच झच𑀪च 𑀠नपच𑀟𑁦 च 𑀠चप𑀳चण𑀢𑀟 चढ𑁣𑀞च𑀟𑀳न𑀯
    𑀣च बन𑀣न𑀠𑀠च𑀱च 𑀘च𑀪𑀢𑀣न𑀟 𑀠न𑀘चललन पच 𑀯 पच ढच 𑀣च बन𑀣न𑀠𑀠च𑀱च बच 𑀘च𑀪𑀢𑀣न𑀟 च𑀟च𑀪त𑀫𑀢𑀳प 𑀣चढच𑀟ष𑀣चढच𑀟 𑀣च 𑀠न𑀘चललन 𑀠च𑀳न चलचझच 𑀣च झन𑀟ब𑀢णच𑀪 𑀠च𑀙च𑀢𑀞चपच 𑀙णच𑀟त𑀢 पच 𑀘च𑀠न𑀳 𑀯
  • Loss: DenoisingAutoEncoderLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.125 500 2.5392
0.25 1000 1.4129
0.375 1500 1.3383
0.5 2000 1.288
0.625 2500 1.2627
0.75 3000 1.239
0.875 3500 1.2208
1.0 4000 1.2041
1.125 4500 1.1743
1.25 5000 1.1633
1.375 5500 1.1526
1.5 6000 1.1375
1.625 6500 1.1313
1.75 7000 1.1246
1.875 7500 1.1162
2.0 8000 1.1096
2.125 8500 1.0876
2.25 9000 1.0839
2.375 9500 1.0791
2.5 10000 1.0697
2.625 10500 1.0671
2.75 11000 1.0644
2.875 11500 1.0579
3.0 12000 1.0528

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

DenoisingAutoEncoderLoss

@inproceedings{wang-2021-TSDAE,
    title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
    author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", 
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    pages = "671--688",
    url = "https://arxiv.org/abs/2104.06979",
}
Downloads last month
5
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for T-Blue/tsdae_pro_MiniLM_L12_2