当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
您可以通过如下git clone命令,或者ModelScope SDK来下载模型
SDK下载
#安装ModelScope
pip install modelscope
#SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('ZhipuAI/CogVideoX1.1-5B-SAT')
Git下载
#Git模型下载
git clone https://www.modelscope.cn/ZhipuAI/CogVideoX1.1-5B-SAT.git
如果您是本模型的贡献者,我们邀请您根据模型贡献文档,及时完善模型卡片内容。
======= license: other language: - en base_model: - THUDM/CogVideoX-5b - THUDM/CogVideoX-5b-I2V pipeline_tag: image-to-image ---CogVideoX1.1-5B-SAT
📍 Visit QingYing and API Platform to experience commercial video generation models.
CogVideoX is an open-source video generation model originating from Qingying. CogVideoX1.1 is the upgraded version of the open-source CogVideoX model.
The CogVideoX1.1-5B series model supports 10-second videos and higher resolutions. The CogVideoX1.1-5B-I2V
variant supports any resolution for video generation.
This repository contains the SAT-weight version of the CogVideoX1.1-5B model, specifically including the following modules:
Transformer
Includes weights for both I2V and T2V models. Specifically, it includes the following modules:
├── transformer_i2v
│ ├── 1000
│ │ └── mp_rank_00_model_states.pt
│ └── latest
└── transformer_t2v
├── 1000
│ └── mp_rank_00_model_states.pt
└── latest
Please select the corresponding weights when performing inference.
VAE
The VAE part is consistent with the CogVideoX-5B series and does not require updating. You can also download it directly from here. Specifically, it includes the following modules:
└── vae
└── 3d-vae.pt
Text Encoder
Consistent with the diffusers version of CogVideoX-5B, no updates are necessary. You can also download it directly from here. Specifically, it includes the following modules:
├── t5-v1_1-xxl
├── added_tokens.json
├── config.json
├── model-00001-of-00002.safetensors
├── model-00002-of-00002.safetensors
├── model.safetensors.index.json
├── special_tokens_map.json
├── spiece.model
└── tokenizer_config.json
0 directories, 8 files
Model License
This model is released under the CogVideoX LICENSE.
Citation
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}
d3b67333b542bd8c97cb01bbd5e89088b27a5ae6