zRzRzRzRzRzRzR sixsixcoder commited on
Commit
b44e98f
·
verified ·
1 Parent(s): 82d25da

Update README_zh.md (#1)

Browse files

- Update README_zh.md (9678610124843848e40ab39e5c327c08fe61f8ce)


Co-authored-by: sixgod <sixsixcoder@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README_zh.md +53 -25
README_zh.md CHANGED
@@ -1,27 +1,20 @@
1
- # GLM-4-9B
2
 
3
- If you are using the weights from this repository, please update to
4
 
5
- <span style="color:red; font-weight:bold;"> transformers>=4.46.0 </span>
6
 
7
- These weights are **not compatible** with older versions of the transformers library.
8
 
9
- ## Model Introduction
10
 
11
- GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
12
- AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
13
- and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
14
- addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
15
- custom tool calls (Function Call), and long text
16
- reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
17
- languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
18
- context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
19
- **GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
20
- In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
21
- text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
22
- GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
23
 
24
- We evaluated the GLM-4-9B base model on some typical tasks, and the results are as follows:
25
 
26
  | Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
27
  |:--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:---------:|
@@ -30,18 +23,53 @@ We evaluated the GLM-4-9B base model on some typical tasks, and the results are
30
  | ChatGLM3-6B-Base | 61.4 | 69.0 | - | 72.3 | 25.7 | - |
31
  | GLM-4-9B | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1** |
32
 
33
- **This repository is the base version of GLM-4-9B, supporting 8K context length.**
 
 
 
34
 
35
- For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).
36
 
37
- ## LICENSE
38
 
39
- The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
40
 
 
 
 
 
41
 
42
- ## Citations
43
 
44
- If you find our work useful, please consider citing the following paper.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ```
47
  @misc{glm2024chatglm,
@@ -52,4 +80,4 @@ If you find our work useful, please consider citing the following paper.
52
  archivePrefix={arXiv},
53
  primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
54
  }
55
- ```
 
1
+ # glm-4-9b
2
 
3
+ Read this in [English](README.md).
4
 
5
+ 如果您使用的是这个仓库中的权重,请更新到
6
 
7
+ <span style="color:red; font-weight:bold;"> transformers>=4.46.0 </span>
8
 
9
+ 这些权重 **不兼容** 较早版本的 transformers 库。
10
 
11
+ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
12
+ 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
13
+ 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
14
+ 上下文)等高级功能。
15
+ 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。
 
 
 
 
 
 
 
16
 
17
+ 我们在一些典型任务上对 GLM-4-9B 基座模型进行了评测,结果如下:
18
 
19
  | Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
20
  |:--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:---------:|
 
23
  | ChatGLM3-6B-Base | 61.4 | 69.0 | - | 72.3 | 25.7 | - |
24
  | GLM-4-9B | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1** |
25
 
26
+ **本仓库是 GLM-4-9B 的基座版本,支持`8K`上下文长度。**
27
+
28
+
29
+ ## 运行模型
30
 
31
+ **更多推理代码和依赖信息,请访问我们的 [github](https://github.com/THUDM/GLM-4)。**
32
 
33
+ **请严格按照[依赖](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt)安装,否则无法正常运行。**
34
 
35
+ ### Transformers 推理代码
36
 
37
+ ```python
38
+ import torch
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+ import os
41
 
42
+ os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 设置 GPU 编号,如果单机单卡指定一个,单机多卡指定多个 GPU 编号
43
 
44
+ MODEL_PATH = "THUDM/glm-4-9b-hf"
45
+
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ MODEL_PATH,
48
+ torch_dtype=torch.bfloat16,
49
+ low_cpu_mem_usage=True,
50
+ trust_remote_code=True,
51
+ device_map="auto"
52
+ ).eval()
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
55
+
56
+ encoding = tokenizer("你是谁<|endoftext|>")
57
+ inputs = {key: torch.tensor([value]).to(device) for key, value in encoding.items()}
58
+
59
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
60
+ with torch.no_grad():
61
+ outputs = model.generate(**inputs, **gen_kwargs)
62
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
63
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
64
+ ```
65
+
66
+ ## 协议
67
+
68
+ GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
69
+
70
+ ## 引用
71
+
72
+ 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
73
 
74
  ```
75
  @misc{glm2024chatglm,
 
80
  archivePrefix={arXiv},
81
  primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
82
  }
83
+ ```