|
--- |
|
license: creativeml-openrail-m |
|
language: |
|
- en |
|
tags: |
|
- LLM |
|
- tensorRT |
|
- ChatGLM |
|
--- |
|
## Model Card for lyraChatGLM |
|
|
|
lyraChatGLM is currently the **fastest ChatGLM-6B** available. To the best of our knowledge, it is the **first accelerated version of ChatGLM-6B**. |
|
|
|
The inference speed of lyraChatGLM has achieved **10x** acceleration upon the ealry original version. We are still working hard to further improve the performance. |
|
|
|
Among its main features are: |
|
|
|
- weights: original ChatGLM-6B weights released by THUDM. |
|
- device: lyraChatGLM is mainly based on TensorRT compiled for SM=80 (A100, for example). |
|
- batch_size: compiled with dynamic batch size, max batch_size = 8 |
|
|
|
## Speed |
|
|
|
### test environment |
|
|
|
- device: Nvidia A100 40G |
|
- batch size: 8 |
|
|
|
**Since early chatGLM version didn't suport batch inference, `original` in below table was measured on batch_size=1** |
|
|
|
|
|
**According to [this discussion](https://huggingface.co/TMElyralab/lyraChatGLM/discussions/6), this bug has been fixed and the speed on batch_size=8 reachs up to 137 tokens/s. We will evaluate and update the latest performance.** |
|
|
|
|version|speed| |
|
|:-:|:-:| |
|
|original|30 tokens/s| |
|
|lyraChatGLM|310 tokens/s| |
|
|
|
|
|
## Model Sources |
|
|
|
- **Repository:** [https://huggingface.co/THUDM/chatglm-6b] |
|
|
|
## Try Demo in 2 fast steps |
|
|
|
``` bash |
|
#step 1 |
|
git clone https://huggingface.co/TMElyralab/lyraChatGLM |
|
cd lyraChatGLM |
|
|
|
#step 2 |
|
docker run --gpus=1 --rm --net=host -v ${PWD}:/workdir yibolu96/lyra-chatglm-env:0.0.1 python3 /workdir/demo.py |
|
``` |
|
|
|
## Uses |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from faster_chat_glm import GLM6B, FasterChatGLM |
|
|
|
|
|
MAX_OUT_LEN = 100 |
|
tokenizer = AutoTokenizer.from_pretrained('./models', trust_remote_code=True) |
|
input_str = ["为什么我们需要对深度学习模型加速?", ] |
|
inputs = tokenizer(input_str, return_tensors="pt", padding=True) |
|
input_ids = inputs.input_ids.to('cuda:0') |
|
|
|
|
|
plan_path = './models/glm6b-bs8.ftm' |
|
# kernel for chat model. |
|
kernel = GLM6B(plan_path=plan_path, |
|
batch_size=1, |
|
num_beams=1, |
|
use_cache=True, |
|
num_heads=32, |
|
emb_size_per_heads=128, |
|
decoder_layers=28, |
|
vocab_size=150528, |
|
max_seq_len=MAX_OUT_LEN) |
|
|
|
chat = FasterChatGLM(model_dir="./models", kernel=kernel).half().cuda() |
|
|
|
# generate |
|
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN) |
|
# de-tokenize model output to text |
|
res = tokenizer.decode(sample_output[0], skip_special_tokens=True) |
|
print(res) |
|
``` |
|
## Demo output |
|
|
|
### input |
|
为什么我们需要对深度学习模型加速? 。 |
|
|
|
### output |
|
为什么我们需要对深度学习模型加速? 深度学习模型的训练需要大量计算资源,特别是在训练模型时,需要大量的内存、GPU(图形处理器)和其他计算资源。因此,训练深度学习模型需要一定的时间,并且如果模型不能快速训练,则可能会导致训练进度缓慢或无法训练。 |
|
|
|
以下是一些原因我们需要对深度学习模型加速: |
|
|
|
1. 训练深度神经网络需要大量的计算资源,特别是在训练深度神经网络时,需要更多的计算资源,因此需要更快的训练速度。 |
|
|
|
### TODO: |
|
|
|
We have implemented some special operators in ChatGLM, such as 2D rotary embedding, alpha residual, etcs. |
|
|
|
We plan to add these operators on top of FasterTransformer to release a faster version. |
|
|
|
## Citation |
|
``` bibtex |
|
@Misc{lyraChatGLM2023, |
|
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Bin Wu}, |
|
title = {lyraChatGLM: Accelerating ChatGLM by 10x+}, |
|
howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}}, |
|
year = {2023} |
|
} |
|
``` |
|
|
|
## Report bug |
|
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions |
|
- report bug with a `[bug]` mark in the title. |