|
--- |
|
license: creativeml-openrail-m |
|
language: |
|
- en |
|
tags: |
|
- LLM |
|
- tensorRT |
|
- chatGLM |
|
--- |
|
## Model Card for lyraChatGLM |
|
|
|
lyraChatGLM is currently the **fastest chatGLM-6B** available, as far as we know, it is also the **fisrt accelerated version of chatGLM-6B**. |
|
|
|
The inference speed of lyraChatGLM is **10x** faster than the original version, and we're still working to improve the performance. |
|
|
|
Among its main features are: |
|
|
|
- weights: original ChatGLM-6B weights released by THUDM. |
|
- device: lyraChatGLM is mainly based on FasterTransformer compiled for SM=80 (A100, for example). |
|
|
|
## Speed |
|
|
|
### test environment |
|
|
|
- device: Nvidia A100 40G |
|
|
|
|version|speed| |
|
|:-:|:-:| |
|
|original|30 tokens/s| |
|
|lyraChatGLM|310 tokens/s| |
|
|
|
|
|
## Model Sources |
|
|
|
- **Repository:** [https://huggingface.co/THUDM/chatglm-6b] |
|
|
|
## Uses |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from faster_chat_glm import GLM6B, FasterChatGLM |
|
|
|
|
|
MAX_OUT_LEN = 100 |
|
tokenizer = AutoTokenizer.from_pretrained('./models', trust_remote_code=True) |
|
input_str = ["为什么我们需要对深度学习模型加速?", ] |
|
inputs = tokenizer(input_str, return_tensors="pt", padding=True) |
|
input_ids = inputs.input_ids.to('cuda:0') |
|
|
|
|
|
plan_path = './models/glm6b-bs8.ftm' |
|
# kernel for chat model. |
|
kernel = GLM6B(plan_path=plan_path, |
|
batch_size=1, |
|
num_beams=1, |
|
use_cache=True, |
|
num_heads=32, |
|
emb_size_per_heads=128, |
|
decoder_layers=28, |
|
vocab_size=150528, |
|
max_seq_len=MAX_OUT_LEN) |
|
|
|
chat = FasterChatGLM(model_dir="./models", kernel=kernel).half().cuda() |
|
|
|
# generate |
|
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN) |
|
# de-tokenize model output to text |
|
res = tokenizer.decode(sample_output[0], skip_special_tokens=True) |
|
print(res) |
|
``` |
|
## Demo output |
|
|
|
### input |
|
为什么我们需要对深度学习模型加速? 。 |
|
|
|
### output |
|
为什么我们需要对深度学习模型加速? 深度学习模型的训练需要大量计算资源,特别是在训练模型时,需要大量的内存、GPU(图形处理器)和其他计算资源。因此,训练深度学习模型需要一定的时间,并且如果模型不能快速训练,则可能会导致训练进度缓慢或无法训练。 |
|
|
|
以下是一些原因我们需要对深度学习模型加速: |
|
|
|
1. 训练深度神经网络需要大量的计算资源,特别是在训练深度神经网络时,需要更多的计算资源,因此需要更快的训练速度。 |
|
|
|
|
|
|
|
## Environment |
|
|
|
- hardware: Nvidia Ampere architecture (A100) or compatable |
|
- docker image avaible: https://hub.docker.com/r/bigmoyan/lyra_aigc/tags |
|
``` |
|
docker pull bigmoyan/lyra_aigc:v0.1 |
|
``` |
|
|
|
## Citation |
|
``` bibtex |
|
@Misc{lyraChatGLM2023, |
|
author = {Kangjian Wu, Zhengtao Wang, Bin Wu}, |
|
title = {lyaraChatGLM: Accelerating chatGLM by 10x+}, |
|
howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}}, |
|
year = {2023} |
|
} |
|
``` |
|
|
|
## Report bug |
|
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions |
|
- report bug with a `[bug]` mark in the title. |