ViT_bloodmnist / README.md
TaLong's picture
End of training
9026ffe verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - f1
model-index:
  - name: ViT_bloodmnist
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: medmnist-v2
          type: medmnist-v2
          config: bloodmnist
          split: validation
          args: bloodmnist
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9748611517100263
          - name: F1
            type: f1
            value: 0.97180354304681

ViT_bloodmnist

This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0879
  • Accuracy: 0.9749
  • F1: 0.9718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.2747 1.0 374 0.0930 0.9696 0.9652
0.0955 2.0 748 0.0998 0.9702 0.9670
0.0405 3.0 1122 0.0812 0.9743 0.9725
0.0194 4.0 1496 0.0829 0.9796 0.9784
0.0081 5.0 1870 0.1328 0.9720 0.9696
0.0026 6.0 2244 0.1252 0.9743 0.9735
0.0004 7.0 2618 0.0997 0.9790 0.9778
0.0001 8.0 2992 0.1049 0.9784 0.9768
0.0001 9.0 3366 0.1072 0.9778 0.9761
0.0001 10.0 3740 0.1077 0.9778 0.9761

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1