Teapack1's picture
End of training
db46acc
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-finetuned-no-go-kws
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Speech Commands[no, go]
          type: speech_commands
          config: v0.02
          split: test
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.990086741016109

whisper-tiny-finetuned-no-go-kws

This model is a fine-tuned version of openai/whisper-tiny on the Speech Commands[no, go] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0842
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.33 1.0 780 0.0272 0.9938
0.0002 2.0 1560 0.0420 0.9876
0.0001 3.0 2340 0.0487 0.9913
0.0011 4.0 3120 0.0789 0.9802
0.0001 5.0 3900 0.0915 0.9851
0.0014 6.0 4680 0.1017 0.9839
0.0 7.0 5460 0.0993 0.9888
0.0 8.0 6240 0.0694 0.9913
0.0 9.0 7020 0.0760 0.9926
0.0 10.0 7800 0.0842 0.9901

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0