|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class GPTJMoEConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the GPT-J |
|
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from |
|
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] |
|
for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50400): |
|
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`GPTJModel`]. |
|
n_positions (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 28): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
rotary_dim (`int`, *optional*, defaults to 64): |
|
Number of dimensions in the embedding that Rotary Position Embedding is applied to. |
|
n_inner (`int`, *optional*, defaults to None): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
activation_function (`str`, *optional*, defaults to `"gelu_new"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`int`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing |
|
parameter |
|
num_local_experts (`int`, *optional*, defaults to 4): |
|
Number of experts per Sparse MLP layer. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabeling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
router_jitter_noise (`float`, *optional*, defaults to 0.0): |
|
Amount of noise to add to the router. |
|
""" |
|
|
|
model_type = "gptj_moe" |
|
attribute_map = { |
|
"max_position_embeddings": "n_positions", |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50400, |
|
n_positions=2048, |
|
n_embd=4096, |
|
n_layer=28, |
|
n_head=16, |
|
rotary_dim=64, |
|
n_inner=None, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attn_pdrop=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
tie_word_embeddings=False, |
|
n_experts_per_tok=2, |
|
n_local_experts=4, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
router_jitter_noise=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.rotary_dim = rotary_dim |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
self.num_experts_per_tok = n_experts_per_tok |
|
self.num_local_experts = n_local_experts |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.router_jitter_noise = router_jitter_noise |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs |
|
) |
|
|