TechxGenus's picture
Upload folder using huggingface_hub
f433581 verified
metadata
license: other
license_name: deepseek
license_link: LICENSE

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


AQLM quantized version of deepseek-coder-7b-instruct-v1.5 model. Refer to the official GitHub repo for more information.


1. Introduction of Deepseek-Coder-7B-Instruct v1.5

Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data.

2. Evaluation Results

DeepSeek Coder

3. How to Use

Here give some examples of how to use our model.

Chat Model Inference

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda()
messages=[
    { 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

4. License

This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.

See the LICENSE-MODEL for more details.

5. Contact

If you have any questions, please raise an issue or contact us at service@deepseek.com.