GALAXY-XB-v.03 / README.md
TeeZee's picture
Update README.md
b7f7b2b verified
---
license: apache-2.0
model-index:
- name: GALAXY-XB-v.03
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.55
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.19
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
---
### TeeZee/GALAXY-XB-v.03 ###
Experiment, can DUS be taken one or more steps further?
### Technical notes:
- 12 layers removed from both models, 4 more than in original paper but its 1/4 of all layers(48) as per original paper.
- base version of upstage/SOLAR-10.7B-v1.0 used for merge
- no finetuning done yet, this is just a merge, first step in DUS paper
- next step, if evaluation proves that its at least as 'smart' as base model, should be finetuning to 'recover' after merge
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TeeZee__GALAXY-XB-v.03)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.37|
|AI2 Reasoning Challenge (25-Shot)|61.77|
|HellaSwag (10-Shot) |83.59|
|MMLU (5-Shot) |64.55|
|TruthfulQA (0-shot) |44.19|
|Winogrande (5-shot) |81.06|
|GSM8k (5-shot) |45.03|
### Results
- small quality loss can be observed comparing to base model, as described in the DUS paper
- this merge has best evaluation results, so it will be finetuned to 'recover' from the merge
- finetunig will be done on 5-10% of openorca dataset and full DPO datasets used by SOLAR
- v03 > v01 > v02 - based on average evaluation scores, removing 1/4 of total layers seems to be the correct way to scale DUS