bert-large-mnli / README.md
amodaresi's picture
initial model upload
a9a1a73
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mnli
metrics:
  - accuracy
model-index:
  - name: '42'
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: MNLI
          type: glue
          args: mnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8633723892002038

42

This model is a fine-tuned version of bert-large-uncased on the MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8447
  • Accuracy: 0.8634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: not_parallel
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4274 1.0 12272 0.3892 0.8524
0.2844 2.0 24544 0.4079 0.8565
0.1589 3.0 36816 0.5033 0.8527
0.0877 4.0 49088 0.6624 0.8576
0.0426 5.0 61360 0.8447 0.8634

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu113
  • Datasets 2.7.1
  • Tokenizers 0.11.6