metadata
license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tsf-gs-rots-wtoken-DRPT0.3-r224-f150-6.6-h768-i3072-p32-b8-e50
results: []
tsf-gs-rots-wtoken-DRPT0.3-r224-f150-6.6-h768-i3072-p32-b8-e50
This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2019
- Accuracy: 0.6043
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5400
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1714 | 0.0202 | 109 | 1.1130 | 0.3369 |
1.1431 | 1.0202 | 218 | 1.1018 | 0.3369 |
1.1363 | 2.0202 | 327 | 1.1018 | 0.3369 |
1.1117 | 3.0202 | 436 | 1.1062 | 0.3369 |
1.0901 | 4.0202 | 545 | 1.1024 | 0.3369 |
1.061 | 5.0202 | 654 | 1.1049 | 0.3262 |
1.1047 | 6.0202 | 763 | 1.0996 | 0.3262 |
1.0911 | 7.0202 | 872 | 1.1056 | 0.3369 |
1.1305 | 8.0202 | 981 | 1.0994 | 0.3262 |
1.1145 | 9.0202 | 1090 | 1.0978 | 0.3262 |
1.1075 | 10.0202 | 1199 | 1.0921 | 0.3369 |
1.0886 | 11.0202 | 1308 | 1.0732 | 0.4118 |
1.2003 | 12.0202 | 1417 | 1.1430 | 0.3369 |
1.1006 | 13.0202 | 1526 | 1.0699 | 0.4599 |
1.0594 | 14.0202 | 1635 | 1.0786 | 0.3743 |
1.0283 | 15.0202 | 1744 | 1.0056 | 0.4813 |
1.0804 | 16.0202 | 1853 | 1.0239 | 0.4332 |
1.1055 | 17.0202 | 1962 | 1.0384 | 0.5027 |
1.0577 | 18.0202 | 2071 | 0.9683 | 0.4813 |
0.9961 | 19.0202 | 2180 | 1.1497 | 0.3422 |
0.9365 | 20.0202 | 2289 | 1.1324 | 0.4064 |
1.0121 | 21.0202 | 2398 | 1.0838 | 0.5080 |
0.8774 | 22.0202 | 2507 | 1.1312 | 0.5722 |
0.8922 | 23.0202 | 2616 | 1.1480 | 0.5241 |
1.0667 | 24.0202 | 2725 | 0.9482 | 0.6096 |
0.825 | 25.0202 | 2834 | 0.8572 | 0.6524 |
0.985 | 26.0202 | 2943 | 0.9455 | 0.6043 |
0.8331 | 27.0202 | 3052 | 0.7787 | 0.6310 |
0.8799 | 28.0202 | 3161 | 0.8728 | 0.5989 |
0.7616 | 29.0202 | 3270 | 0.7851 | 0.6952 |
0.6198 | 30.0202 | 3379 | 0.8857 | 0.6524 |
0.9501 | 31.0202 | 3488 | 0.7847 | 0.6791 |
0.708 | 32.0202 | 3597 | 0.7956 | 0.6684 |
0.697 | 33.0202 | 3706 | 0.8540 | 0.6471 |
0.7463 | 34.0202 | 3815 | 0.7873 | 0.7005 |
0.6234 | 35.0202 | 3924 | 1.0743 | 0.5615 |
0.7174 | 36.0202 | 4033 | 0.7159 | 0.7219 |
0.6577 | 37.0202 | 4142 | 0.8100 | 0.6417 |
0.7482 | 38.0202 | 4251 | 0.8508 | 0.6631 |
0.6993 | 39.0202 | 4360 | 0.8796 | 0.6684 |
0.6782 | 40.0202 | 4469 | 0.9814 | 0.6578 |
0.614 | 41.0202 | 4578 | 0.8482 | 0.6631 |
0.7516 | 42.0202 | 4687 | 0.9654 | 0.6471 |
0.7425 | 43.0202 | 4796 | 1.0050 | 0.6257 |
0.6818 | 44.0202 | 4905 | 1.1266 | 0.6096 |
0.4599 | 45.0202 | 5014 | 1.1824 | 0.6364 |
0.7561 | 46.0202 | 5123 | 1.1567 | 0.6417 |
0.7543 | 47.0202 | 5232 | 1.2946 | 0.5882 |
0.4198 | 48.0202 | 5341 | 1.2598 | 0.5882 |
0.6238 | 49.0109 | 5400 | 1.2019 | 0.6043 |
Framework versions
- Transformers 4.41.2
- Pytorch 1.13.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1