camelbert-ner-arabic
This model is a fine-tuned version of CAMeL-Lab/bert-base-arabic-camelbert-mix on unimelb-nlp/wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.2111
- Precision: 0.8884
- Recall: 0.8955
- F1: 0.8919
- Accuracy: 0.9513
Model description
- Base Model: CAMeL-Lab/bert-base-arabic-camelbert-mix
- Task: Named Entity Recognition (NER)
- Language: Arabic
- Training Data: WikiAnn dataset for Arabic
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1892 | 1.0 | 1250 | 0.2003 | 0.8653 | 0.8677 | 0.8665 | 0.9430 |
0.123 | 2.0 | 2500 | 0.1912 | 0.8802 | 0.8826 | 0.8814 | 0.9493 |
0.0809 | 3.0 | 3750 | 0.1942 | 0.8928 | 0.8969 | 0.8948 | 0.9539 |
Usage
from transformers import pipeline
# Load the NER pipeline
nlp = pipeline("ner", model="Tevfik-istanbullu/camelbert-ner-arabic")
# Example text
text = "ูุนู
ู ู
ุญู
ุฏ ูู ุดุฑูุฉ ุฌูุฌู ูู ุฏุจู"
results = nlp(text)
print(results)
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Tevfik-istanbullu/camelbert-ner-arabic
Base model
CAMeL-Lab/bert-base-arabic-camelbert-mixDataset used to train Tevfik-istanbullu/camelbert-ner-arabic
Evaluation results
- Precision on WikiAnn Arabicself-reported0.888
- Recall on WikiAnn Arabicself-reported0.895
- F1 on WikiAnn Arabicself-reported0.892
- Accuracy on WikiAnn Arabicself-reported0.951