Edit model card

Thamer/distilbert-fine-tuned

This model is a fine-tuned version of distilbert-base-cased on an sst2 dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0581
  • Validation Loss: 0.3206
  • Train Recall: 0.8761
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Recall Epoch
0.2134 0.2835 0.9144 0
0.1135 0.2992 0.8671 1
0.0581 0.3206 0.8761 2

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.11.0
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Thamer/distilbert-fine-tuned

Finetuned
(223)
this model

Dataset used to train Thamer/distilbert-fine-tuned