Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Everyone Coder 4X7B Base - GPTQ

Description

This repo contains GPTQ model files for rombo dawg's Everyone Coder 4X7B Base.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by Massed Compute.

Repositories available

Prompt template: Unknown

{prompt}

Known compatible clients / servers

GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.

These GPTQ models are known to work in the following inference servers/webuis.

This may not be a complete list; if you know of others, please let me know!

Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 None Yes 0.1 VMware Open Instruct 8192 12.51 GB No 4-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-4bit-128g-actorder_True 4 128 Yes 0.1 VMware Open Instruct 8192 12.96 GB No 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 VMware Open Instruct 8192 14.36 GB No 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-8bit-32g-actorder_True 8 32 Yes 0.1 VMware Open Instruct 8192 26.68 GB No 8-bit, with group size 32g and Act Order for maximum inference quality.
gptq-3bit-128g-actorder_True 3 128 Yes 0.1 VMware Open Instruct 8192 9.95 GB No 3-bit, with group size 128g and act-order. Higher quality than 128g-False.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 VMware Open Instruct 8192 24.45 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 VMware Open Instruct 8192 25.00 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.

How to download, including from branches

In text-generation-webui

To download from the main branch, enter TheBloke/Everyone-Coder-4x7b-Base-GPTQ in the "Download model" box.

To download from another branch, add :branchname to the end of the download name, eg TheBloke/Everyone-Coder-4x7b-Base-GPTQ:gptq-4bit-128g-actorder_True

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called Everyone-Coder-4x7b-Base-GPTQ:

mkdir Everyone-Coder-4x7b-Base-GPTQ
huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir Everyone-Coder-4x7b-Base-GPTQ
huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir Everyone-Coder-4x7b-Base-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

With git (not recommended)

To clone a specific branch with git, use a command like this:

git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ

Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git folder as a blob.)

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.

  2. Under Download custom model or LoRA, enter TheBloke/Everyone-Coder-4x7b-Base-GPTQ.

    • To download from a specific branch, enter for example TheBloke/Everyone-Coder-4x7b-Base-GPTQ:gptq-4bit-128g-actorder_True
    • see Provided Files above for the list of branches for each option.
  3. Click Download.

  4. The model will start downloading. Once it's finished it will say "Done".

  5. In the top left, click the refresh icon next to Model.

  6. In the Model dropdown, choose the model you just downloaded: Everyone-Coder-4x7b-Base-GPTQ

  7. The model will automatically load, and is now ready for use!

  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.

    • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  9. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/Everyone-Coder-4x7b-Base-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(
  prompt_template,
  max_new_tokens=128,
  do_sample=True,
  temperature=0.7,
  top_p=0.95,
  top_k=40,
  repetition_penalty=1.1
)

print(f"Model output: {response}")

Python code example: inference from this GPTQ model

Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .

Example Python code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Everyone-Coder-4x7b-Base-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-128g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Write a story about llamas"
system_message = "You are a story writing assistant"
prompt_template=f'''{prompt}
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

ExLlama is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Michael Levine, 闃挎槑, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bj盲reholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: rombo dawg's Everyone Coder 4X7B Base

Everyone-Coder-4x7b-Base

image/jpeg

EveryoneLLM series of models are a new Mixtral type model created using experts that were finetuned by the community, for the community. This is the first model to release in the series and it is a coding specific model. EveryoneLLM, which will be a more generalized model, will be released in the near future after more work is done to fine tune the process of merging Mistral models into a larger Mixtral models with greater success.

The goal of the EveryoneLLM series of models is to be a replacement or an alternative to Mixtral-8x7b that is more suitable for general and specific use, as well as easier to fine tune. Since Mistralai is being secretive about the "secret sause" that makes Mixtral-Instruct such an effective fine tune of the Mixtral-base model, I've decided its time for the community to directly compete with Mistralai on our own.

The models that were used in this merger were as follow:

Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 馃挆

You can find the write up for this model here:

https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing

Config for the merger can be found bellow:

base_model: mistralai_Mistral-7B-v0.1
gate_mode: hidden
dtype: float16
experts:
  - source_model: cognitivecomputations_dolphin-2.6-mistral-7b-dpo-laser
    positive_prompts:
    - "Help me debug this code."
    - "Rewrite this function in Python."
    - "Optimize this C# script."
    - "Implement this feature using JavaScript."
    - "Convert this HTML structure into a more efficient design."
    - "Assist me with writing a program that"
  - source_model: fblgit_UNA-TheBeagle-7b-v1
    positive_prompts:
    - "How do you"
    - "Explain the concept of"
    - "Give an overview of"
    - "Compare and contrast between"
    - "Provide information about"
    - "Help me understand"
    - "Summarize"
    - "Make a recommendation on"
    - "Answer this question"
  - source_model: LucciAI_openchat-3.5-0106-function-calling
    positive_prompts:
    - "Write a program to solve this problem"
    - "Modify this function to improve its performance"
    - "Refactor this code to enhance readability"
    - "Create a custom function for this specific use case"
    - "Optimize this algorithm to reduce computational complexity"
    - "Implement this feature by extending existing codebase"
    - "Integrate this API call into the application"
    - "Help me troubleshoot and fix this bug"
    - "Review and test this code snippet before deployment"
    - "Analyze this error log to identify potential issues"
    - "Generate a set of unit tests for this module"
    - "Evaluate different approaches to solving this problem"
    - "Do a web search for"
    - "Use the plugin to"
  - source_model: WizardLM_WizardMath-7B-V1.1
    positive_prompts:
    - "add these numbers"
    - "whats 2+2"
    - "subtraction"
    - "division"
    - "multiplication"
    - "addition"
    - "I need help with a math problem"
    - "Solve for x"
    - "Add these two numbers together: 4 + 3 = 7"
    - "Multiply 5 by 6: 5 * 6 = 30"
    - "Divide 8 by 2: 8 / 2 = 4"
    - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
    - "Calculate the square root of 16: sqrt(16) = 4"
    - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
    - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
    - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
    - "Graph the line y = 2x + 3"
    - "Approximate pi to three decimal places: 3.142"
    - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
    - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
    - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
    - "Solve the system of equations Ax = b: x = [-5, 10]"
    - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"
Downloads last month
31
Safetensors
Model size
3.26B params
Tensor type
I32
BF16
FP16
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/Everyone-Coder-4x7b-Base-GPTQ

Quantized
(8)
this model