TheBloke commited on
Commit
f4ef362
1 Parent(s): 8387314

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +464 -0
README.md ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: rombodawg/Everyone-Coder-4x7b-Base
3
+ inference: false
4
+ license: cc-by-4.0
5
+ model_creator: rombo dawg
6
+ model_name: Everyone Coder 4X7B Base
7
+ model_type: mixtral
8
+ prompt_template: '{prompt}
9
+
10
+ '
11
+ quantized_by: TheBloke
12
+ tags:
13
+ - merge
14
+ - moe
15
+ ---
16
+ <!-- markdownlint-disable MD041 -->
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # Everyone Coder 4X7B Base - GPTQ
36
+ - Model creator: [rombo dawg](https://huggingface.co/rombodawg)
37
+ - Original model: [Everyone Coder 4X7B Base](https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base)
38
+
39
+ <!-- description start -->
40
+ # Description
41
+
42
+ This repo contains GPTQ model files for [rombo dawg's Everyone Coder 4X7B Base](https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base).
43
+
44
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
+
46
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
47
+
48
+ <!-- description end -->
49
+ <!-- repositories-available start -->
50
+ ## Repositories available
51
+
52
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-AWQ)
53
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ)
54
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GGUF)
55
+ * [rombo dawg's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base)
56
+ <!-- repositories-available end -->
57
+
58
+ <!-- prompt-template start -->
59
+ ## Prompt template: Unknown
60
+
61
+ ```
62
+ {prompt}
63
+
64
+ ```
65
+
66
+ <!-- prompt-template end -->
67
+
68
+
69
+
70
+ <!-- README_GPTQ.md-compatible clients start -->
71
+ ## Known compatible clients / servers
72
+
73
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
74
+
75
+ These GPTQ models are known to work in the following inference servers/webuis.
76
+
77
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
78
+ - [KoboldAI United](https://github.com/henk717/koboldai)
79
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
80
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
81
+
82
+ This may not be a complete list; if you know of others, please let me know!
83
+ <!-- README_GPTQ.md-compatible clients end -->
84
+
85
+ <!-- README_GPTQ.md-provided-files start -->
86
+ ## Provided files, and GPTQ parameters
87
+
88
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
89
+
90
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
91
+
92
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
93
+
94
+ <details>
95
+ <summary>Explanation of GPTQ parameters</summary>
96
+
97
+ - Bits: The bit size of the quantised model.
98
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
99
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
100
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
101
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
102
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
103
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
104
+
105
+ </details>
106
+
107
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
108
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 12.51 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
110
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 12.96 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
111
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 14.36 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
112
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 26.68 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
113
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 9.95 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
114
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.45 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
115
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 25.00 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
116
+
117
+ <!-- README_GPTQ.md-provided-files end -->
118
+
119
+ <!-- README_GPTQ.md-download-from-branches start -->
120
+ ## How to download, including from branches
121
+
122
+ ### In text-generation-webui
123
+
124
+ To download from the `main` branch, enter `TheBloke/Everyone-Coder-4x7b-Base-GPTQ` in the "Download model" box.
125
+
126
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Everyone-Coder-4x7b-Base-GPTQ:gptq-4bit-128g-actorder_True`
127
+
128
+ ### From the command line
129
+
130
+ I recommend using the `huggingface-hub` Python library:
131
+
132
+ ```shell
133
+ pip3 install huggingface-hub
134
+ ```
135
+
136
+ To download the `main` branch to a folder called `Everyone-Coder-4x7b-Base-GPTQ`:
137
+
138
+ ```shell
139
+ mkdir Everyone-Coder-4x7b-Base-GPTQ
140
+ huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False
141
+ ```
142
+
143
+ To download from a different branch, add the `--revision` parameter:
144
+
145
+ ```shell
146
+ mkdir Everyone-Coder-4x7b-Base-GPTQ
147
+ huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False
148
+ ```
149
+
150
+ <details>
151
+ <summary>More advanced huggingface-cli download usage</summary>
152
+
153
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
154
+
155
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
156
+
157
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
158
+
159
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
160
+
161
+ ```shell
162
+ pip3 install hf_transfer
163
+ ```
164
+
165
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
166
+
167
+ ```shell
168
+ mkdir Everyone-Coder-4x7b-Base-GPTQ
169
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Everyone-Coder-4x7b-Base-GPTQ --local-dir Everyone-Coder-4x7b-Base-GPTQ --local-dir-use-symlinks False
170
+ ```
171
+
172
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
173
+ </details>
174
+
175
+ ### With `git` (**not** recommended)
176
+
177
+ To clone a specific branch with `git`, use a command like this:
178
+
179
+ ```shell
180
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Everyone-Coder-4x7b-Base-GPTQ
181
+ ```
182
+
183
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
184
+
185
+ <!-- README_GPTQ.md-download-from-branches end -->
186
+ <!-- README_GPTQ.md-text-generation-webui start -->
187
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
188
+
189
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
190
+
191
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
192
+
193
+ 1. Click the **Model tab**.
194
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Everyone-Coder-4x7b-Base-GPTQ`.
195
+
196
+ - To download from a specific branch, enter for example `TheBloke/Everyone-Coder-4x7b-Base-GPTQ:gptq-4bit-128g-actorder_True`
197
+ - see Provided Files above for the list of branches for each option.
198
+
199
+ 3. Click **Download**.
200
+ 4. The model will start downloading. Once it's finished it will say "Done".
201
+ 5. In the top left, click the refresh icon next to **Model**.
202
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Everyone-Coder-4x7b-Base-GPTQ`
203
+ 7. The model will automatically load, and is now ready for use!
204
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
205
+
206
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
207
+
208
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
209
+
210
+ <!-- README_GPTQ.md-text-generation-webui end -->
211
+
212
+ <!-- README_GPTQ.md-use-from-tgi start -->
213
+ ## Serving this model from Text Generation Inference (TGI)
214
+
215
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
216
+
217
+ Example Docker parameters:
218
+
219
+ ```shell
220
+ --model-id TheBloke/Everyone-Coder-4x7b-Base-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
221
+ ```
222
+
223
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
224
+
225
+ ```shell
226
+ pip3 install huggingface-hub
227
+ ```
228
+
229
+ ```python
230
+ from huggingface_hub import InferenceClient
231
+
232
+ endpoint_url = "https://your-endpoint-url-here"
233
+
234
+ prompt = "Tell me about AI"
235
+ prompt_template=f'''{prompt}
236
+ '''
237
+
238
+ client = InferenceClient(endpoint_url)
239
+ response = client.text_generation(
240
+ prompt_template,
241
+ max_new_tokens=128,
242
+ do_sample=True,
243
+ temperature=0.7,
244
+ top_p=0.95,
245
+ top_k=40,
246
+ repetition_penalty=1.1
247
+ )
248
+
249
+ print(f"Model output: {response}")
250
+ ```
251
+ <!-- README_GPTQ.md-use-from-tgi end -->
252
+ <!-- README_GPTQ.md-use-from-python start -->
253
+ ## Python code example: inference from this GPTQ model
254
+
255
+ ### Install the necessary packages
256
+
257
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
258
+
259
+ ```shell
260
+ pip3 install --upgrade transformers optimum
261
+ # If using PyTorch 2.1 + CUDA 12.x:
262
+ pip3 install --upgrade auto-gptq
263
+ # or, if using PyTorch 2.1 + CUDA 11.x:
264
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
265
+ ```
266
+
267
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
268
+
269
+ ```shell
270
+ pip3 uninstall -y auto-gptq
271
+ git clone https://github.com/PanQiWei/AutoGPTQ
272
+ cd AutoGPTQ
273
+ git checkout v0.5.1
274
+ pip3 install .
275
+ ```
276
+
277
+ ### Example Python code
278
+
279
+ ```python
280
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
281
+
282
+ model_name_or_path = "TheBloke/Everyone-Coder-4x7b-Base-GPTQ"
283
+ # To use a different branch, change revision
284
+ # For example: revision="gptq-4bit-128g-actorder_True"
285
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
286
+ device_map="auto",
287
+ trust_remote_code=False,
288
+ revision="main")
289
+
290
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
291
+
292
+ prompt = "Write a story about llamas"
293
+ system_message = "You are a story writing assistant"
294
+ prompt_template=f'''{prompt}
295
+ '''
296
+
297
+ print("\n\n*** Generate:")
298
+
299
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
300
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
301
+ print(tokenizer.decode(output[0]))
302
+
303
+ # Inference can also be done using transformers' pipeline
304
+
305
+ print("*** Pipeline:")
306
+ pipe = pipeline(
307
+ "text-generation",
308
+ model=model,
309
+ tokenizer=tokenizer,
310
+ max_new_tokens=512,
311
+ do_sample=True,
312
+ temperature=0.7,
313
+ top_p=0.95,
314
+ top_k=40,
315
+ repetition_penalty=1.1
316
+ )
317
+
318
+ print(pipe(prompt_template)[0]['generated_text'])
319
+ ```
320
+ <!-- README_GPTQ.md-use-from-python end -->
321
+
322
+ <!-- README_GPTQ.md-compatibility start -->
323
+ ## Compatibility
324
+
325
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
326
+
327
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
328
+
329
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
330
+ <!-- README_GPTQ.md-compatibility end -->
331
+
332
+ <!-- footer start -->
333
+ <!-- 200823 -->
334
+ ## Discord
335
+
336
+ For further support, and discussions on these models and AI in general, join us at:
337
+
338
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
339
+
340
+ ## Thanks, and how to contribute
341
+
342
+ Thanks to the [chirper.ai](https://chirper.ai) team!
343
+
344
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
345
+
346
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
347
+
348
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
349
+
350
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
351
+
352
+ * Patreon: https://patreon.com/TheBlokeAI
353
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
354
+
355
+ **Special thanks to**: Aemon Algiz.
356
+
357
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
358
+
359
+
360
+ Thank you to all my generous patrons and donaters!
361
+
362
+ And thank you again to a16z for their generous grant.
363
+
364
+ <!-- footer end -->
365
+
366
+ # Original model card: rombo dawg's Everyone Coder 4X7B Base
367
+
368
+ Everyone-Coder-4x7b-Base
369
+
370
+
371
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg)
372
+
373
+ EveryoneLLM series of models are a new Mixtral type model created using experts that were finetuned by the community, for the community. This is the first model to release in the series and it is a coding specific model. EveryoneLLM, which will be a more generalized model, will be released in the near future after more work is done to fine tune the process of merging Mistral models into a larger Mixtral models with greater success.
374
+
375
+ The goal of the EveryoneLLM series of models is to be a replacement or an alternative to Mixtral-8x7b that is more suitable for general and specific use, as well as easier to fine tune. Since Mistralai is being secretive about the "secret sause" that makes Mixtral-Instruct such an effective fine tune of the Mixtral-base model, I've decided its time for the community to directly compete with Mistralai on our own.
376
+
377
+ The models that were used in this merger were as follow:
378
+
379
+ - https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1
380
+
381
+ - https://huggingface.co/LucciAI/openchat-3.5-0106-function-calling
382
+
383
+ - https://huggingface.co/WizardLM/WizardMath-7B-V1.1
384
+
385
+ - https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
386
+
387
+
388
+ Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗
389
+
390
+ You can find the write up for this model here:
391
+
392
+ https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing
393
+
394
+ Config for the merger can be found bellow:
395
+
396
+ ```
397
+ base_model: mistralai_Mistral-7B-v0.1
398
+ gate_mode: hidden
399
+ dtype: float16
400
+ experts:
401
+ - source_model: cognitivecomputations_dolphin-2.6-mistral-7b-dpo-laser
402
+ positive_prompts:
403
+ - "Help me debug this code."
404
+ - "Rewrite this function in Python."
405
+ - "Optimize this C# script."
406
+ - "Implement this feature using JavaScript."
407
+ - "Convert this HTML structure into a more efficient design."
408
+ - "Assist me with writing a program that"
409
+ - source_model: fblgit_UNA-TheBeagle-7b-v1
410
+ positive_prompts:
411
+ - "How do you"
412
+ - "Explain the concept of"
413
+ - "Give an overview of"
414
+ - "Compare and contrast between"
415
+ - "Provide information about"
416
+ - "Help me understand"
417
+ - "Summarize"
418
+ - "Make a recommendation on"
419
+ - "Answer this question"
420
+ - source_model: LucciAI_openchat-3.5-0106-function-calling
421
+ positive_prompts:
422
+ - "Write a program to solve this problem"
423
+ - "Modify this function to improve its performance"
424
+ - "Refactor this code to enhance readability"
425
+ - "Create a custom function for this specific use case"
426
+ - "Optimize this algorithm to reduce computational complexity"
427
+ - "Implement this feature by extending existing codebase"
428
+ - "Integrate this API call into the application"
429
+ - "Help me troubleshoot and fix this bug"
430
+ - "Review and test this code snippet before deployment"
431
+ - "Analyze this error log to identify potential issues"
432
+ - "Generate a set of unit tests for this module"
433
+ - "Evaluate different approaches to solving this problem"
434
+ - "Do a web search for"
435
+ - "Use the plugin to"
436
+ - source_model: WizardLM_WizardMath-7B-V1.1
437
+ positive_prompts:
438
+ - "add these numbers"
439
+ - "whats 2+2"
440
+ - "subtraction"
441
+ - "division"
442
+ - "multiplication"
443
+ - "addition"
444
+ - "I need help with a math problem"
445
+ - "Solve for x"
446
+ - "Add these two numbers together: 4 + 3 = 7"
447
+ - "Multiply 5 by 6: 5 * 6 = 30"
448
+ - "Divide 8 by 2: 8 / 2 = 4"
449
+ - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
450
+ - "Calculate the square root of 16: sqrt(16) = 4"
451
+ - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
452
+ - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
453
+ - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
454
+ - "Graph the line y = 2x + 3"
455
+ - "Approximate pi to three decimal places: 3.142"
456
+ - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
457
+ - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
458
+ - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
459
+ - "Solve the system of equations Ax = b: x = [-5, 10]"
460
+ - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"
461
+ ```
462
+
463
+
464
+