Transformers
llama
LLongMA-2-7B-GGML / README.md
TheBloke's picture
Update README.md
0e2462e
|
raw
history blame
13.7 kB
metadata
inference: false
license: other
model_type: llama
TheBlokeAI

ConceptofMind's LLongMA 2 7B GGML

These files are GGML format model files for ConceptofMind's LLongMA 2 7B.

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

  • KoboldCpp, a powerful GGML web UI with full GPU acceleration out of the box. Especially good for story telling.
  • LoLLMS Web UI, a great web UI with GPU acceleration via the c_transformers backend.
  • LM Studio, a fully featured local GUI. Supports full GPU accel on macOS. Also supports Windows, without GPU accel.
  • text-generation-webui, the most popular web UI. Requires extra steps to enable GPU accel via llama.cpp backend.
  • ctransformers, a Python library with LangChain support and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with OpenAI-compatible API server.

Extended context

This is an extended context base Llama 2 model. Please check if your GGML client supports extended context. llama.cpp and KoboldCpp do, but I have not verified the others.

I believe the correct parameters for llama.cpp extended context are:

-c <contextsize> --rope-freq-base 10000 --rope-freq-scale 0.5"

I have tested these parameters and the answer is coherent, but I haven't yet confirmed if they're ideal. Please let me know in Discussions if you have feedback on that.

Repositories available

Prompt template: None

{prompt}

Compatibility

Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.

New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387.

They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.

Explanation of the new k-quant methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
llongma-2-7b.ggmlv3.q2_K.bin q2_K 2 2.87 GB 5.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
llongma-2-7b.ggmlv3.q3_K_L.bin q3_K_L 3 3.60 GB 6.10 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
llongma-2-7b.ggmlv3.q3_K_M.bin q3_K_M 3 3.28 GB 5.78 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
llongma-2-7b.ggmlv3.q3_K_S.bin q3_K_S 3 2.95 GB 5.45 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
llongma-2-7b.ggmlv3.q4_0.bin q4_0 4 3.79 GB 6.29 GB Original quant method, 4-bit.
llongma-2-7b.ggmlv3.q4_1.bin q4_1 4 4.21 GB 6.71 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
llongma-2-7b.ggmlv3.q4_K_M.bin q4_K_M 4 4.08 GB 6.58 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
llongma-2-7b.ggmlv3.q4_K_S.bin q4_K_S 4 3.83 GB 6.33 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
llongma-2-7b.ggmlv3.q5_0.bin q5_0 5 4.63 GB 7.13 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
llongma-2-7b.ggmlv3.q5_1.bin q5_1 5 5.06 GB 7.56 GB Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
llongma-2-7b.ggmlv3.q5_K_M.bin q5_K_M 5 4.78 GB 7.28 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
llongma-2-7b.ggmlv3.q5_K_S.bin q5_K_S 5 4.65 GB 7.15 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
llongma-2-7b.ggmlv3.q6_K.bin q6_K 6 5.53 GB 8.03 GB New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization
llongma-2-7b.ggmlv3.q8_0.bin q8_0 8 7.16 GB 9.66 GB Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 32 -m llongma-2-7b.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Llamas are very"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz.

Patreon special mentions: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse

Thank you to all my generous patrons and donaters!

Original model card: ConceptofMind's LLongMA 2 7B

LLongMA-2, a suite of Llama-2 models, trained at 8k context length using linear positional interpolation scaling. The model was trained in collaboration with Emozilla of NousResearch and Kaiokendev.

We worked directly with Kaiokendev, to extend the context length of the Llama-2 7b model through fine-tuning. The models pass all our evaluations and maintain the same perplexity at 8k extrapolation surpassing the performance of other recent methodologies.

The model has identical performance to LLaMA 2 under 4k context length, performance scales directly to 8k, and works out-of-the-box with the new version of transformers (4.31) or with trust_remote_code for <= 4.30.

A Llama-2 13b model trained at 8k will release soon on huggingface here: https://huggingface.co/conceptofmind/LLongMA-2-13b

Applying the method to the rotary position embedding requires only slight changes to the model's code by dividing the positional index, t, by a scaling factor.

The repository containing u/emozilla’s implementation of scaled rotary embeddings can be found here: https://github.com/jquesnelle/scaled-rope

If you would like to learn more about scaling rotary embeddings, I would strongly recommend reading u/kaiokendev's blog posts on his findings: https://kaiokendev.github.io/

A PR to add scaled rotary embeddings to Huggingface transformers has been added by u/joao_gante and merged: https://github.com/huggingface/transformers/pull/24653

The model was trained for ~1 billion tokens on Togethercompute's Red Pajama dataset. The context length of the examples varies: https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

The pre-tokenized dataset will be available here for you to use soon: https://huggingface.co/datasets/conceptofmind/rp-llama-2-7b-tokenized-chunked

I would also recommend checking out the phenomenal research by Ofir Press on ALiBi which laid the foundation for many of these scaling techniques: https://arxiv.org/abs/2108.12409

It is also worth reviewing the paper, A Length-Extrapolatable Transformer, and xPos technique which also applies scaling to rotary embeddings: https://arxiv.org/pdf/2212.10554.pdf

We previously trained the first publicly available model with rotary embedding scaling here: https://twitter.com/EnricoShippole/status/1655599301454594049?s=20

A Llama-2 13b model trained at 8k will release soon. As well as a suite of Llama-2 models trained at 16k context lengths will be released soon.

You can find out more about the NousResearch organization here: https://huggingface.co/NousResearch

The compute for this model release is all thanks to the generous sponsorship by CarperAI, Emad Mostaque, and StabilityAI. This is not an official StabilityAI product.

If you have any questions about the data or model be sure to reach out and ask! I will try to respond promptly.

The previous suite of LLongMA model releases can be found here: https://twitter.com/EnricoShippole/status/1677346578720256000?s=20

All of the models can be found on Huggingface: https://huggingface.co/conceptofmind

You can find the Llama-2 usage policy here: https://ai.meta.com/llama/use-policy/