Transformers
mpt
Composer
MosaicML
llm-foundry
TheBloke's picture
Update README.md
eb1b380
|
raw
history blame
8.51 kB
---
license: cc-by-sa-3.0
datasets:
- mosaicml/dolly_hhrlhf
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
# MPT-7B-Instruct GGML
This is GGML format quantised 4-bit, 5-bit and 8-bit [MosaicML's MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct).
This repo is the result of converting to GGML and quantising.
## Repositories available
* [MPT-7B: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-GGML).
* [MPT-7B-Instruct: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-Instruct-GGML).
* [MPT-7B-Storywriter: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-Storywriter-GGML).
## Provided files
| Name | Quant method | Bits | Size | RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
`mpt7b-instruct.ggmlv2.q4_0.bin` | q4_0 | 4bit | 4.16GB | 6.2GB | 4-bit. |
`mpt7b-instruct.ggmlv2.q4_1.bin` | q4_0 | 4bit | 4.99GB | 7.2GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
`mpt7b-instruct.ggmlv2.q5_0.bin` | q5_0 | 5bit | 4.57GB | 6.8GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
`mpt7b-instruct.ggmlv2.q5_1.bin` | q5_1 | 5bit | 4.99GB | 7.2GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
`mpt7b-instruct.ggmlv2.q8_0.bin` | q8_0 | 8bit | 7.48GB | 9.7GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
`mpt7b-instruct.ggmlv2.fp16.bin` | fp16 | 16bit | 13.30GB | 16GB | Full 16-bit. |
## Compatibilty
These files are **not** compatible with llama.cpp.
Currently they can be used with:
* The example `mpt` binary provided with [ggml](https://github.com/ggerganov/ggml)
* [rustformers' llm](https://github.com/rustformers/llm)
As other options become available I will endeavour to update them here (do let me know in the Community tab if I've missed something!)
## How to build, and an example of using the ggml `mpt` binary (command line only):
```
git clone https://github.com/ggerganov/ggml
cd ggml
mkdir build
cd build
cmake ..
cmake --build . --config Release
bin/mpt -m /path/to/mpt7b-instruct.ggmlv2.q4_0.bin -t 8 -n 512 -p "Write a story about llamas"
```
Please see the ggml repo for other build options.
# Original model card: MPT-7B-Instruct
# MPT-7B-Instruct
MPT-7B-Instruct is a model for short-form instruction following.
It is built by finetuning [MPT-7B](https://huggingface.co/spaces/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
* License: _CC-By-SA-3.0_
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
May 5, 2023
## Model License
CC-By-SA-3.0
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://join.slack.com/t/mosaicml-community/shared_invite/zt-1btms90mc-GipE2ufuPkKY0QBrmF3LSA)!
### Example Question/Instruction
**Longboi24**:
> What is a quoll?
**MPT-7B-Instruct**:
>A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
```python
config = transformers.AutoConfig.from_pretrained(
'mosaicml/mpt-7b-instruct',
trust_remote_code=True
)
config.attn_config['attn_impl'] = 'triton'
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct',
config=config,
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
model.to(device='cuda:0')
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
config = transformers.AutoConfig.from_pretrained(
'mosaicml/mpt-7b-instruct',
trust_remote_code=True
)
config.update({"max_seq_len": 4096})
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct',
config=config,
trust_remote_code=True
)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## PreTraining Data
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Sam Havens and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```