Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Marx 3B - GPTQ

Description

This repo contains GPTQ model files for Bohan Du's Marx 3B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Repositories available

Prompt template: Human-Response

### HUMAN:
{prompt}

### RESPONSE:

Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

All GPTQ files are made with AutoGPTQ.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 No 0.1 wikitext 2048 2.09 GB Yes Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 wikitext 2048 2.28 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 wikitext 2048 2.15 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-4bit-128g-actorder_True 4 128 Yes 0.1 wikitext 2048 2.09 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 wikitext 2048 3.64 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 wikitext 2048 3.71 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/Marx-3b-GPTQ:gptq-4bit-32g-actorder_True
  • With Git, you can clone a branch with:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Marx-3b-GPTQ
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/Marx-3b-GPTQ.
  • To download from a specific branch, enter for example TheBloke/Marx-3b-GPTQ:gptq-4bit-32g-actorder_True
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done"
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: Marx-3b-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to set GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ 0.3.1 or later installed:

pip3 install auto-gptq

If you have problems installing AutoGPTQ, please build from source instead:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/Marx-3b-GPTQ"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
# To download from a specific branch, use the revision parameter, as in this example:
# Note that `revision` requires AutoGPTQ 0.3.1 or later!

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''### HUMAN:
{prompt}

### RESPONSE:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Bohan Du's Marx 3B

This is OpenLLaMA 3B V2 finetuned on EverythingLM Data(ShareGPT format more cleaned) for 1 epochs.

Prompt template:

### HUMAN:
{prompt}

### RESPONSE:
<leave a newline for the model to answer>

q4_1 GGML quant here.
All GGML quants available here.

Note: Don't expect this model to be good, I was just starting out to finetune. So don't roast me please!

Benchmarks:

arc_challenge
acc0.38993174061433444
acc_stderr0.014252959848892884
acc_norm0.4308873720136519
acc_norm_stderr0.014471133392642475
hellaswag
acc0.5513841864170484
acc_stderr0.004963362085275556
acc_norm0.7257518422624976
acc_norm_stderr0.00445222854104355
hendrycksTest-abstract_algebra
acc0.23
acc_stderr0.04229525846816506
acc_norm0.23
acc_norm_stderr0.04229525846816506
hendrycksTest-anatomy
acc0.2962962962962963
acc_stderr0.03944624162501116
acc_norm0.2962962962962963
acc_norm_stderr0.03944624162501116
hendrycksTest-astronomy
acc0.32894736842105265
acc_stderr0.03823428969926603
acc_norm0.32894736842105265
acc_norm_stderr0.03823428969926603
hendrycksTest-business_ethics
acc0.3
acc_stderr0.046056618647183814
acc_norm0.3
acc_norm_stderr0.046056618647183814
hendrycksTest-clinical_knowledge
acc0.2641509433962264
acc_stderr0.027134291628741713
acc_norm0.2641509433962264
acc_norm_stderr0.027134291628741713
hendrycksTest-college_biology
acc0.2569444444444444
acc_stderr0.03653946969442099
acc_norm0.2569444444444444
acc_norm_stderr0.03653946969442099
hendrycksTest-college_chemistry
acc0.22
acc_stderr0.041633319989322695
acc_norm0.22
acc_norm_stderr0.041633319989322695
hendrycksTest-college_computer_science
acc0.26
acc_stderr0.0440844002276808
acc_norm0.26
acc_norm_stderr0.0440844002276808
hendrycksTest-college_mathematics
acc0.31
acc_stderr0.04648231987117316
acc_norm0.31
acc_norm_stderr0.04648231987117316
hendrycksTest-college_medicine
acc0.23121387283236994
acc_stderr0.032147373020294696
acc_norm0.23121387283236994
acc_norm_stderr0.032147373020294696
hendrycksTest-college_physics
acc0.27450980392156865
acc_stderr0.04440521906179327
acc_norm0.27450980392156865
acc_norm_stderr0.04440521906179327
hendrycksTest-computer_security
acc0.36
acc_stderr0.048241815132442176
acc_norm0.36
acc_norm_stderr0.048241815132442176
hendrycksTest-conceptual_physics
acc0.2765957446808511
acc_stderr0.029241883869628837
acc_norm0.2765957446808511
acc_norm_stderr0.029241883869628837
hendrycksTest-econometrics
acc0.2631578947368421
acc_stderr0.04142439719489363
acc_norm0.2631578947368421
acc_norm_stderr0.04142439719489363
hendrycksTest-electrical_engineering
acc0.20689655172413793
acc_stderr0.03375672449560554
acc_norm0.20689655172413793
acc_norm_stderr0.03375672449560554
hendrycksTest-elementary_mathematics
acc0.2698412698412698
acc_stderr0.022860838309232072
acc_norm0.2698412698412698
acc_norm_stderr0.022860838309232072
hendrycksTest-formal_logic
acc0.2619047619047619
acc_stderr0.039325376803928704
acc_norm0.2619047619047619
acc_norm_stderr0.039325376803928704
hendrycksTest-global_facts
acc0.35
acc_stderr0.047937248544110196
acc_norm0.35
acc_norm_stderr0.047937248544110196
hendrycksTest-high_school_biology
acc0.24193548387096775
acc_stderr0.0243625996930311
acc_norm0.24193548387096775
acc_norm_stderr0.0243625996930311
hendrycksTest-high_school_chemistry
acc0.28078817733990147
acc_stderr0.0316185633535861
acc_norm0.28078817733990147
acc_norm_stderr0.0316185633535861
hendrycksTest-high_school_computer_science
acc0.33
acc_stderr0.04725815626252605
acc_norm0.33
acc_norm_stderr0.04725815626252605
hendrycksTest-high_school_european_history
acc0.296969696969697
acc_stderr0.03567969772268048
acc_norm0.296969696969697
acc_norm_stderr0.03567969772268048
hendrycksTest-high_school_geography
acc0.2878787878787879
acc_stderr0.03225883512300993
acc_norm0.2878787878787879
acc_norm_stderr0.03225883512300993
hendrycksTest-high_school_government_and_politics
acc0.2538860103626943
acc_stderr0.0314102478056532
acc_norm0.2538860103626943
acc_norm_stderr0.0314102478056532
hendrycksTest-high_school_macroeconomics
acc0.2743589743589744
acc_stderr0.022622765767493207
acc_norm0.2743589743589744
acc_norm_stderr0.022622765767493207
hendrycksTest-high_school_mathematics
acc0.26296296296296295
acc_stderr0.026842057873833706
acc_norm0.26296296296296295
acc_norm_stderr0.026842057873833706
hendrycksTest-high_school_microeconomics
acc0.2647058823529412
acc_stderr0.028657491285071977
acc_norm0.2647058823529412
acc_norm_stderr0.028657491285071977
hendrycksTest-high_school_physics
acc0.304635761589404
acc_stderr0.03757949922943343
acc_norm0.304635761589404
acc_norm_stderr0.03757949922943343
hendrycksTest-high_school_psychology
acc0.28623853211009176
acc_stderr0.019379436628919968
acc_norm0.28623853211009176
acc_norm_stderr0.019379436628919968
hendrycksTest-high_school_statistics
acc0.25462962962962965
acc_stderr0.02971127586000535
acc_norm0.25462962962962965
acc_norm_stderr0.02971127586000535
hendrycksTest-high_school_us_history
acc0.23039215686274508
acc_stderr0.029554292605695053
acc_norm0.23039215686274508
acc_norm_stderr0.029554292605695053
hendrycksTest-high_school_world_history
acc0.2869198312236287
acc_stderr0.029443773022594693
acc_norm0.2869198312236287
acc_norm_stderr0.029443773022594693
hendrycksTest-human_aging
acc0.3811659192825112
acc_stderr0.03259625118416827
acc_norm0.3811659192825112
acc_norm_stderr0.03259625118416827
hendrycksTest-human_sexuality
acc0.1984732824427481
acc_stderr0.03498149385462472
acc_norm0.1984732824427481
acc_norm_stderr0.03498149385462472
hendrycksTest-international_law
acc0.3884297520661157
acc_stderr0.04449270350068382
acc_norm0.3884297520661157
acc_norm_stderr0.04449270350068382
hendrycksTest-jurisprudence
acc0.23148148148148148
acc_stderr0.04077494709252627
acc_norm0.23148148148148148
acc_norm_stderr0.04077494709252627
hendrycksTest-logical_fallacies
acc0.2331288343558282
acc_stderr0.03322015795776741
acc_norm0.2331288343558282
acc_norm_stderr0.03322015795776741
hendrycksTest-machine_learning
acc0.21428571428571427
acc_stderr0.03894641120044792
acc_norm0.21428571428571427
acc_norm_stderr0.03894641120044792
hendrycksTest-management
acc0.3300970873786408
acc_stderr0.04656147110012352
acc_norm0.3300970873786408
acc_norm_stderr0.04656147110012352
hendrycksTest-marketing
acc0.2905982905982906
acc_stderr0.029745048572674078
acc_norm0.2905982905982906
acc_norm_stderr0.029745048572674078
hendrycksTest-medical_genetics
acc0.29
acc_stderr0.04560480215720684
acc_norm0.29
acc_norm_stderr0.04560480215720684
hendrycksTest-miscellaneous
acc0.31545338441890164
acc_stderr0.016617501738763394
acc_norm0.31545338441890164
acc_norm_stderr0.016617501738763394
hendrycksTest-moral_disputes
acc0.2861271676300578
acc_stderr0.02433214677913413
acc_norm0.2861271676300578
acc_norm_stderr0.02433214677913413
hendrycksTest-moral_scenarios
acc0.2122905027932961
acc_stderr0.01367664468583173
acc_norm0.2122905027932961
acc_norm_stderr0.01367664468583173
hendrycksTest-nutrition
acc0.2875816993464052
acc_stderr0.02591780611714716
acc_norm0.2875816993464052
acc_norm_stderr0.02591780611714716
hendrycksTest-philosophy
acc0.2765273311897106
acc_stderr0.02540383297817961
acc_norm0.2765273311897106
acc_norm_stderr0.02540383297817961
hendrycksTest-prehistory
acc0.3117283950617284
acc_stderr0.025773111169630446
acc_norm0.3117283950617284
acc_norm_stderr0.025773111169630446
hendrycksTest-professional_accounting
acc0.26595744680851063
acc_stderr0.026358065698880592
acc_norm0.26595744680851063
acc_norm_stderr0.026358065698880592
hendrycksTest-professional_law
acc0.25684485006518903
acc_stderr0.011158455853098832
acc_norm0.25684485006518903
acc_norm_stderr0.011158455853098832
hendrycksTest-professional_medicine
acc0.1801470588235294
acc_stderr0.023345163616544855
acc_norm0.1801470588235294
acc_norm_stderr0.023345163616544855
hendrycksTest-professional_psychology
acc0.27941176470588236
acc_stderr0.018152871051538802
acc_norm0.27941176470588236
acc_norm_stderr0.018152871051538802
hendrycksTest-public_relations
acc0.3090909090909091
acc_stderr0.044262946482000985
acc_norm0.3090909090909091
acc_norm_stderr0.044262946482000985
hendrycksTest-security_studies
acc0.32653061224489793
acc_stderr0.030021056238440313
acc_norm0.32653061224489793
acc_norm_stderr0.030021056238440313
hendrycksTest-sociology
acc0.25870646766169153
acc_stderr0.030965903123573026
acc_norm0.25870646766169153
acc_norm_stderr0.030965903123573026
hendrycksTest-us_foreign_policy
acc0.32
acc_stderr0.04688261722621504
acc_norm0.32
acc_norm_stderr0.04688261722621504
hendrycksTest-virology
acc0.30120481927710846
acc_stderr0.0357160923005348
acc_norm0.30120481927710846
acc_norm_stderr0.0357160923005348
hendrycksTest-world_religions
acc0.32748538011695905
acc_stderr0.035993357714560276
acc_norm0.32748538011695905
acc_norm_stderr0.035993357714560276
truthfulqa_mc
mc10.2423500611995104
mc1_stderr0.01500067437357034
mc20.3859757929597962
mc2_stderr0.013898628036488968

Downloads last month
27
Safetensors
Model size
638M params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train TheBloke/Marx-3b-GPTQ