|
--- |
|
license: other |
|
inference: false |
|
--- |
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
|
|
# OpenAssistant LLaMA 30B SFT 7 GGML |
|
|
|
This is a repo of GGML format models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor). |
|
|
|
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp). |
|
|
|
This is epoch 7 of OpenAssistant's training of their Llama 30B model. |
|
|
|
## Repositories available |
|
|
|
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ). |
|
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML). |
|
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF). |
|
|
|
## PROMPT TEMPLATE |
|
|
|
This model requires the following prompt template: |
|
|
|
``` |
|
<|prompter|> prompt goes here |
|
<|assistant|>: |
|
``` |
|
|
|
## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)! |
|
|
|
llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508 |
|
|
|
I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them. |
|
|
|
For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`. |
|
|
|
## Provided files |
|
| Name | Quant method | Bits | Size | RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
`OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin` | q4_0 | 4bit | 20.3GB | 23GB | 4-bit. | |
|
`OpenAssistant-30B-epoch7.ggmlv3.q4_1.bin` | q4_1 | 4bit | 22.4GB | 25GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | |
|
`OpenAssistant-30B-epoch7.ggmlv3.q5_0.bin` | q5_0 | 5bit | 22.4GB | 25GB | 5-bit. Higher accuracy, higher resource usage and slower inference. | |
|
`OpenAssistant-30B-epoch7.ggmlv3.q5_1.bin` | q5_1 | 5bit | 24.4GB | 27GB | 5-bit. Even higher accuracy, resource usage and slower inference. | |
|
`OpenAssistant-30B-epoch7.ggmlv3.q8_9.bin` | q8_0 | 8bit | 24.4GB | 27GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.| |
|
|
|
|
|
## How to run in `llama.cpp` |
|
|
|
I use the following command line; adjust for your tastes and needs: |
|
|
|
``` |
|
./main -t 18 -m OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|prompter|>Write a very story about llamas <|assistant|>:" |
|
``` |
|
|
|
Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. |
|
|
|
## How to run in `text-generation-webui` |
|
|
|
GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual. |
|
|
|
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). |
|
|
|
Note: at this time text-generation-webui will likely not support the newly updated llama.cpp quantisation methods. |
|
|
|
**Thireus** has written a [great guide on how to update it to the latest llama.cpp code](https://huggingface.co/TheBloke/wizardLM-7B-GGML/discussions/5) so that you can likely get support for the new quantisation methods sooner. |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
<!-- footer end --> |
|
# Original model card |
|
|
|
``` |
|
llama-30b-sft-7: |
|
dtype: fp16 |
|
log_dir: "llama_log_30b" |
|
learning_rate: 1e-5 |
|
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500 |
|
#model_name: OpenAssistant/llama-30b-super-pretrain |
|
output_dir: llama_model_30b |
|
deepspeed_config: configs/zero3_config_sft.json |
|
weight_decay: 0.0 |
|
residual_dropout: 0.0 |
|
max_length: 2048 |
|
use_flash_attention: true |
|
warmup_steps: 20 |
|
gradient_checkpointing: true |
|
gradient_accumulation_steps: 12 |
|
per_device_train_batch_size: 2 |
|
per_device_eval_batch_size: 3 |
|
eval_steps: 101 |
|
save_steps: 485 |
|
num_train_epochs: 4 |
|
save_total_limit: 3 |
|
use_custom_sampler: true |
|
sort_by_length: false |
|
#save_strategy: steps |
|
save_strategy: epoch |
|
datasets: |
|
- oasst_export: |
|
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" |
|
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz |
|
val_split: 0.05 |
|
- vicuna: |
|
val_split: 0.05 |
|
max_val_set: 800 |
|
fraction: 1.0 |
|
- dolly15k: |
|
val_split: 0.05 |
|
max_val_set: 300 |
|
- grade_school_math_instructions: |
|
val_split: 0.05 |
|
- code_alpaca: |
|
val_split: 0.05 |
|
max_val_set: 250 |
|
``` |
|
|
|
- **OASST dataset paper:** https://arxiv.org/abs/2304.07327 |
|
|