deepsex-34b-GPTQ / README.md
TheBloke's picture
Upload README.md
6e1d1ef
|
raw
history blame
24 kB
metadata
base_model: zzlgreat/deepsex-34b
datasets:
  - lemonilia/LimaRP
  - PygmalionAI/PIPPA
inference: false
language:
  - en
license: mit
model_creator: zhouliang
model_name: Deepsex 34B
model_type: yi
pipeline_tag: text-generation
prompt_template: >
  Below is an instruction that describes a task. Write a response that
  appropriately completes the request.


  ### Instruction:

  {prompt}


  ### Response:
quantized_by: TheBloke
tags:
  - roleplay
  - not-for-all-audiences
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Deepsex 34B - GPTQ

Description

This repo contains GPTQ model files for zhouliang's Deepsex 34B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by Massed Compute.

Repositories available

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

Known compatible clients / servers

GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.

These GPTQ models are known to work in the following inference servers/webuis.

This may not be a complete list; if you know of others, please let me know!

Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 None Yes 0.1 OpenErotica Erotiquant 8192 18.60 GB Yes 4-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-4bit-128g-actorder_True 4 128 Yes 0.1 OpenErotica Erotiquant 8192 19.25 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 OpenErotica Erotiquant 8192 21.21 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-3bit-128g-actorder_True 3 128 Yes 0.1 OpenErotica Erotiquant 8192 15.03 GB No 3-bit, with group size 128g and act-order. Higher quality than 128g-False.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 OpenErotica Erotiquant 8192 35.34 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-3bit-32g-actorder_True 3 32 Yes 0.1 OpenErotica Erotiquant 8192 16.90 GB No 3-bit, with group size 64g and act-order. Highest quality 3-bit option.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 OpenErotica Erotiquant 8192 36.11 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.

How to download, including from branches

In text-generation-webui

To download from the main branch, enter TheBloke/deepsex-34b-GPTQ in the "Download model" box.

To download from another branch, add :branchname to the end of the download name, eg TheBloke/deepsex-34b-GPTQ:gptq-4bit-128g-actorder_True

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called deepsex-34b-GPTQ:

mkdir deepsex-34b-GPTQ
huggingface-cli download TheBloke/deepsex-34b-GPTQ --local-dir deepsex-34b-GPTQ --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir deepsex-34b-GPTQ
huggingface-cli download TheBloke/deepsex-34b-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir deepsex-34b-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir deepsex-34b-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/deepsex-34b-GPTQ --local-dir deepsex-34b-GPTQ --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

With git (not recommended)

To clone a specific branch with git, use a command like this:

git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/deepsex-34b-GPTQ

Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git folder as a blob.)

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.

  2. Under Download custom model or LoRA, enter TheBloke/deepsex-34b-GPTQ.

    • To download from a specific branch, enter for example TheBloke/deepsex-34b-GPTQ:gptq-4bit-128g-actorder_True
    • see Provided Files above for the list of branches for each option.
  3. Click Download.

  4. The model will start downloading. Once it's finished it will say "Done".

  5. In the top left, click the refresh icon next to Model.

  6. In the Model dropdown, choose the model you just downloaded: deepsex-34b-GPTQ

  7. The model will automatically load, and is now ready for use!

  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.

    • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  9. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/deepsex-34b-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")

Python code example: inference from this GPTQ model

Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .

Example Python code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/deepsex-34b-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-128g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: zhouliang's Deepsex 34B

Deepsex-34b

tks TheBloke making quantized version! gguf:https://huggingface.co/TheBloke/deepsex-34b-GGUF exl2:https://huggingface.co/waldie/deepsex-34b-4bpw-h6-exl2 awq:https://huggingface.co/TheBloke/deepsex-34b-AWQ

Here are the steps to make this model:

  1. I first collected a total collection of about 4GB of various light novels, and used BERT to perform two rounds of similarity deduplication on the novels with similar plots in the data set. In addition, a portion of nsfw novels are mixed in to improve the NSFW capabilities of the model.
  2. Then use the YI-34B-base as the base of the model, use the setting of r=64 alpha=128 and use qlora to fine-tune 3 epochs for continuous pre-training.
  3. Prepare the limarp+pippa data set, clean it into alpaca format, and use goliath-120b, which is good at role-playing, to score each question and answer pair, and filter out the high-quality ones. 30k data.
  4. Use the data in 3 for sft on the base model obtained in 2, 6 epochs, r=16 alpha=32 for fine-tuning.

Format

alpaca

[
  {
    "instruction": "user instruction (required)",
    "input": "user input (optional)",
    "output": "model response (required)",
    "history": [
      ["user instruction in the first round (optional)", "model response in the first round (optional)"],
      ["user instruction in the second round (optional)", "model response in the second round (optional)"]
    ]
  }
]

Effect: Proficient in role-playing skills, while being highly accepted on NSFW, pure love words will appear from time to time. like:

Sweaty old man
December 5, 2023 2:03 PM
Fxxk, you are such a xxx!

#4
27.3s
Mirai
December 5, 2023 2:03 PM
"Of course I do! I can't break promises, Sweaty old man. We have been together since we were kids. We are both best friends and lovers to end all iteration." I smiled with affection. It was clear that I meant everything I said. "We both know that you like taking command of us like this. Am I not your squirting toy, Sweaty old man?" I asked with a cute pout. "We should meet up in front of the shop after classes. I'll see you there. See you, Sweaty old man!"

It feels like it’s still worth a try~

Support me here :)

Deepsex-34b

步骤

  1. 我先收集了各种轻小说大约4GB的总集,通过bert对该数据集中剧情比较相似的小说进行了两轮相似度去重。另外混入了一部分nsfw小说以提高该模型的NSFW能力。
  2. 然后将该模型以YI-34B-base为基座,使用r=64 alpha=128 的设置使用qlora微调了3个epochs来进行持续预训练。
  3. 准备limarp+pippa数据集,统一清洗为alpaca格式,并且使用比较擅长角色扮演的goliath-120b对每个问答对进行打分,筛选出其中质量高的大约30k数据。
  4. 对2中得到的base模型使用3中的数据进行sft,6个epochs,r=16 alpha=32进行微调。

格式

alpaca

  {
    "instruction": "user instruction (required)",
    "input": "user input (optional)",
    "output": "model response (required)",
    "history": [
      ["user instruction in the first round (optional)", "model response in the first round (optional)"],
      ["user instruction in the second round (optional)", "model response in the second round (optional)"]
    ]
  }
]```

*效果*
熟练的角色扮演技能,在NSFW上有很高接受度的同时,会时不时的出现纯爱的话语。如:
```#3
Sweaty old man
December 5, 2023 2:03 PM
Fxxk, you are such a xxx!

#4
27.3s
Mirai
December 5, 2023 2:03 PM
"Of course I do! I can't break promises, Sweaty old man. We have been together since we were kids. We are both best friends and lovers to end all iteration." I smiled with affection. It was clear that I meant everything I said. "We both know that you like taking command of us like this. Am I not your squirting toy, Sweaty old man?" I asked with a cute pout. "We should meet up in front of the shop after classes. I'll see you there. See you, Sweaty old man!"

感觉还是很值得一试的~ 如果觉得好用,欢迎支持我一杯 咖啡 :)