inference: false
license: other
Falcon 40B-Instruct GGML GGML
These files are GGML format model files for Falcon 40B-Instruct GGML .
GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:
Repositories available
- 4-bit GPTQ models for GPU inference
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference
- Unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Compatibility
Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit 2d5db48
.
These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.
New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K
These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387
.
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
Explanation of the new k-quant methods
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
- GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
falcon40b-instruct.ggmlv3.q2_K.bin | q2_K | 2 | 13.74 GB | 16.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
falcon40b-instruct.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.98 GB | 20.48 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
falcon40b-instruct.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 17.98 GB | 20.48 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
falcon40b-instruct.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 17.98 GB | 20.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
falcon40b-instruct.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 23.54 GB | 26.04 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
falcon40b-instruct.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 23.54 GB | 26.04 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
falcon40b-instruct.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 28.77 GB | 31.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
falcon40b-instruct.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 28.77 GB | 31.27 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
falcon40b-instruct.ggmlv3.q6_K.bin | q6_K | 6 | 34.33 GB | 36.83 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
falcon40b-instruct.ggmlv3.q8_0.bin | q8_0 | 8 | 44.46 GB | 46.96 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to run in llama.cpp
I use the following command line; adjust for your tastes and needs:
./main -t 10 -ngl 32 -m gpt4-x-alpaca-13b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
Change -t 10
to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8
.
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp-models.md.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
Patreon special mentions: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
Thank you to all my generous patrons and donaters!
Original model card: Falcon 40B-Instruct GGML
β¨ Falcon-40B-Instruct
Falcon-40B-Instruct is a 40B parameters causal decoder-only model built by TII based on Falcon-40B and finetuned on a mixture of Baize. It is made available under the Apache 2.0 license.
Paper coming soon π.
π€ To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading this great blogpost fron HF!
Why use Falcon-40B-Instruct?
- You are looking for a ready-to-use chat/instruct model based on Falcon-40B.
- Falcon-40B is the best open-source model available. It outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard.
- It features an architecture optimized for inference, with FlashAttention (Dao et al., 2022) and multiquery (Shazeer et al., 2019).
π¬ This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from Falcon-40B.
πΈ Looking for a smaller, less expensive model? Falcon-7B-Instruct is Falcon-40B-Instruct's little brother!
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-40b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
For fast inference with Falcon, check-out Text Generation Inference! Read more in this blogpost.
You will need at least 85-100GB of memory to swiftly run inference with Falcon-40B.
Model Card for Falcon-40B-Instruct
Model Details
Model Description
- Developed by: https://www.tii.ae;
- Model type: Causal decoder-only;
- Language(s) (NLP): English and French;
- License: Apache 2.0;
- Finetuned from model: Falcon-40B.
Model Source
- Paper: coming soon.
Uses
Direct Use
Falcon-40B-Instruct has been finetuned on a chat dataset.
Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
Bias, Risks, and Limitations
Falcon-40B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
Recommendations
We recommend users of Falcon-40B-Instruct to develop guardrails and to take appropriate precautions for any production use.
How to Get Started with the Model
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-40b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Training Details
Training Data
Falcon-40B-Instruct was finetuned on a 150M tokens from Bai ze mixed with 5% of RefinedWeb data.
The data was tokenized with the Falcon-7B/40B tokenizer.
Evaluation
Paper coming soon.
See the OpenLLM Leaderboard for early results.
Technical Specifications
For more information about pretraining, see Falcon-40B.
Model Architecture and Objective
Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
The architecture is broadly adapted from the GPT-3 paper (Brown et al., 2020), with the following differences:
- Positionnal embeddings: rotary (Su et al., 2021);
- Attention: multiquery (Shazeer et al., 2019) and FlashAttention (Dao et al., 2022);
- Decoder-block: parallel attention/MLP with a single layer norm.
For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree.
Hyperparameter | Value | Comment |
---|---|---|
Layers | 60 | |
d_model |
8192 | |
head_dim |
64 | Reduced to optimise for FlashAttention |
Vocabulary | 65024 | |
Sequence length | 2048 |
Compute Infrastructure
Hardware
Falcon-40B-Instruct was trained on AWS SageMaker, on 64 A100 40GB GPUs in P4d instances.
Software
Falcon-40B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
Citation
Paper coming soon π. In the meanwhile, you can use the following information to cite:
@article{falcon40b,
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
year={2023}
}
To learn more about the pretraining dataset, see the π RefinedWeb paper.
@article{refinedweb,
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
journal={arXiv preprint arXiv:2306.01116},
eprint={2306.01116},
eprinttype = {arXiv},
url={https://arxiv.org/abs/2306.01116},
year={2023}
}
To cite the Baize instruction dataset used for this model:
@article{xu2023baize,
title={Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data},
author={Xu, Canwen and Guo, Daya and Duan, Nan and McAuley, Julian},
journal={arXiv preprint arXiv:2304.01196},
year={2023}
}
License
Falcon-40B-Instruct is made available under the Apache 2.0 license.