|
--- |
|
license: other |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- alpaca |
|
- llama |
|
- chat |
|
- gpt4 |
|
inference: false |
|
--- |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/UBgz4VXf">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? Patreon coming soon!</a></p> |
|
</div> |
|
</div> |
|
|
|
This is a 4bit 128g GPTQ of [chansung's gpt4-alpaca-lora-13b](https://huggingface.co/chansung/gpt4-alpaca-lora-13b). |
|
|
|
## How to easily download and use this model in text-generation-webui |
|
|
|
Open the text-generation-webui UI as normal. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter `TheBloke/gpt4-alpaca-lora-13B-GPTQ-4bit-128g`. |
|
3. Click **Download**. |
|
4. Wait until it says it's finished downloading. |
|
5. Click the **Refresh** icon next to **Model** in the top left. |
|
6. In the **Model drop-down**: choose the model you just downloaded,`gpt4-alpaca-lora-13B-GPTQ-4bit-128g`. |
|
7. If you see an error in the bottom right, ignore it - it's temporary. |
|
8. Check that the `GPTQ parameters` are correct on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` |
|
9. Click **Save settings for this model** in the top right. |
|
10. Click **Reload the Model** in the top right. |
|
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! |
|
|
|
Command to create was: |
|
``` |
|
CUDA_VISIBLE_DEVICES=0 python3 llama.py /content/gpt4-alpaca-lora-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors /content/gpt4-alpaca-lora-13B-GPTQ-4bit-128g.safetensors |
|
``` |
|
|
|
Command to clone the latest Triton GPTQ-for-LLaMa repo for inference using `llama_inference.py`, or in `text-generation-webui`: |
|
``` |
|
# Clone text-generation-webui, if you don't already have it |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
# Make a repositories directory |
|
mkdir -p text-generation-webui/repositories |
|
cd text-generation-webui/repositories |
|
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui |
|
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa |
|
``` |
|
|
|
There is also a `no-act-order.safetensors` file which will work with oobabooga's fork of GPTQ-for-LLaMa; it does not require the latest GPTQ code. |
|
|
|
## Want to support my work? |
|
|
|
I've had a lot of people ask if they can contribute. I love providing models and helping people, but it is starting to rack up pretty big cloud computing bills. |
|
|
|
So if you're able and willing to contribute, it'd be most gratefully received and will help me to keep providing models, and work on various AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions, and I'll gladly quantise any model you'd like to try. |
|
|
|
* Patreon: coming soon! (just awaiting approval) |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
* Discord: https://discord.gg/UBgz4VXf |
|
# Original model card is below |
|
|
|
This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system. |
|
- Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation |
|
- Training script: |
|
```shell |
|
python finetune.py \ |
|
--base_model='decapoda-research/llama-30b-hf' \ |
|
--data_path='alpaca_data_gpt4.json' \ |
|
--num_epochs=10 \ |
|
--cutoff_len=512 \ |
|
--group_by_length \ |
|
--output_dir='./gpt4-alpaca-lora-30b' \ |
|
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ |
|
--lora_r=16 \ |
|
--batch_size=... \ |
|
--micro_batch_size=... |
|
``` |
|
|
|
You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18). |
|
|