TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Manticore 13B Chat Pyg - GPTQ
- Model creator: Open Access AI Collective
- Original model: Manticore 13B Chat Pyg
Description
This repo contains GPTQ model files for Open Access AI Collective's Manticore 13B Chat Pyg.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Open Access AI Collective's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Vicuna
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
Provided files and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the main
branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | No | 0.01 | wikitext | 2048 | 7.45 GB | Yes | 4-bit, without Act Order and group size 128g. |
How to download from branches
- In text-generation-webui, you can add
:branch
to the end of the download name, egTheBloke/manticore-13b-chat-pyg-GPTQ:main
- With Git, you can clone a branch with:
git clone --single-branch --branch main https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ
- In Python Transformers code, the branch is the
revision
parameter; see below.
How to easily download and use this model in text-generation-webui.
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/manticore-13b-chat-pyg-GPTQ
.
- To download from a specific branch, enter for example
TheBloke/manticore-13b-chat-pyg-GPTQ:main
- see Provided Files above for the list of branches for each option.
- Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
manticore-13b-chat-pyg-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
For CodeLlama models only: you must use Transformers 4.33.0 or later.
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/manticore-13b-chat-pyg-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.
ExLlama is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Open Access AI Collective's Manticore 13B Chat Pyg
Manticore 13B Chat
Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using ###
in favor of
chat only style prompts using USER:
,ASSISTANT:
as well as pygmalion/metharme prompting using <|system|>, <|user|> and <|model|>
tokens.
Questions, comments, feedback, looking to donate, or want to help? Reach out on our Discord or email wing@openaccessaicollective.org
Training Datasets
Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B.
Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.
- de-duped pygmalion dataset, filtered down to RP data
- riddle_sense - instruct augmented
- hellaswag, updated for detailed explanations w 30K+ rows
- gsm8k - instruct augmented
- ewof/code-alpaca-instruct-unfiltered
Manticore 13B
- ShareGPT - based on a cleaned and de-suped subset
- WizardLM
- Wizard-Vicuna
- subset of QingyiSi/Alpaca-CoT for roleplay and CoT
- GPT4-LLM-Cleaned
- GPTeacher-General-Instruct
- ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the
train
split - hellaswag - 5K row subset of instruct augmented for concise responses, derived from the
train
split - metaeval/ScienceQA_text_only - instruct for concise responses
- openai/summarize_from_feedback - instruct augmented tl;dr summarization
Not added from Manticore 13B:
- mmlu - mmlu datasets were not added to this model as the
test
split is used for benchmarks
Shoutouts
Special thanks to Nanobit for helping with Axolotl, TheBloke for quantizing these models are more accessible to all, ehartford for cleaned datasets, and 0x000011b for the RP dataset.
Demo
Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality.
Release Notes
Build
Manticore was built with Axolotl on 8xA100 80GB
- 3 epochs taking approximately 8 hours. No further epochs will be released.
- The configuration to duplicate this build is provided in this repo's /config folder.
Bias, Risks, and Limitations
Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information.
Examples
USER: make up a sonnet in the style of shakespeare about a skier skiing in the glades on a bluebird day.
ASSISTANT: A skier doth glide 'neath sun’s glow, His edges sharp to cut the snow, Bluebird sky above, While he doth revel on the slopes below, The cold air biting his nose, But not his spirits, For he is filled with a sense of joy, As he carves through the powdery drifts. His body moves in graceful rhythm, And each turn he makes with ease, He feels like he could ski forever, With no care for the world outside these glades.
USER: tell me a joke about alpacas
ASSISTANT: Did you hear about the famous alpaca ballet dancer? She was a prima llama.
USER: okay, that is actually pretty good
ASSISTANT: What do you call an alpaca in a bowtie? A llama-cholla!
USER: why is that funny?
ASSISTANT: Because it’s a play on words. “Llama-cholla” sounds like “lame chola,” which is Spanish slang for someone who acts cool or pretentious. So, the joke is implying that alpacas are vain and act cool with their bowties.
USER: What is 44 + 77?
ASSISTANT: 121
USER: What is the sum of 33 and 77?
ASSISTANT: 110
USER: tell me 5 words that start with “ex” and the sum of 33 and 77.
ASSISTANT: exotic, expressive, explicit, experimental, and extravagant. The sum of 33 and 77 is 110.
USER: tell me 3 words that start with “egr” and end in “s”
ASSISTANT: egret, eggplant, and egrets.
- oof
USER: Sally has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have?
ASSISTANT: Sally has a total of 6 siblings, so she has a total of 6 - 2 = 4 sisters.
USER: Sally has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have? Use multi-step reasoning to explain your answer.
ASSISTANT: Sally has a total of three brothers, so she has a total of three * 2 = six siblings. Her family consists of three boys and six girls in total. This means that Sally has three sisters since there are six female relatives and only three male ones.
USER: But when brothers have sisters, aren’t they shared or the same?
ASSISTANT: No, not every sibling shares their mother. For example, I have two brothers who share one mother but my third brother has a different mother from both of them.
USER: Let’s assume they all share the same mother and father. Now explain with multi-step reasoning.
ASSISTANT: If Sally has three brothers then that means she has six siblings altogether. Each brother has two sisters, which means that there are twelve female relatives in her family - one for each of her brothers and herself. Since there are only six females in the entire family, that means that Sally’s mother has no other children than her own three sons - so she can’t be the mother of any of the sisters. So all those sisters have to belong to one of the brothers, and since they are shared by two brothers, then each brother has a single sister. Therefore, there is only one sister for Sally, making the final answer 1.
- pretty sure that reasoning isn't correct, and the final answer of having 1 sister is a lucky guess
- Downloads last month
- 30