TheBlueObserver's picture
43e5cabf5adc6a7756b76b73bf22767cc61f8b8917d8c07098e776b881583cd4
7ddf28e verified
|
raw
history blame
1.17 kB
---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- mlx
---
# TheBlueObserver/Qwen2.5-Coder-1.5B-Instruct-MLX-0cb1b
The Model [TheBlueObserver/Qwen2.5-Coder-1.5B-Instruct-MLX-0cb1b](https://huggingface.co/TheBlueObserver/Qwen2.5-Coder-1.5B-Instruct-MLX-0cb1b) was
converted to MLX format from [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct)
using mlx-lm version **0.20.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("TheBlueObserver/Qwen2.5-Coder-1.5B-Instruct-MLX-0cb1b")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```