|
import torch |
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan |
|
import soundfile as sf |
|
import gradio as gr |
|
import scipy.io.wavfile as wav |
|
import numpy as np |
|
import wave |
|
from datasets import load_dataset, Audio, config |
|
from IPython.display import Audio |
|
|
|
|
|
checkpoint = "TheUpperCaseGuy/Guy-Urdu-TTS" |
|
processor = SpeechT5Processor.from_pretrained(checkpoint) |
|
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) |
|
tokenizer = processor.tokenizer |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
|
|
buck2uni = { |
|
u"\u0627":"A", |
|
u"\u0627":"A", |
|
u"\u0675":"A", |
|
u"\u0673":"A", |
|
u"\u0630":"A", |
|
u"\u0622":"AA", |
|
u"\u0628":"B", |
|
u"\u067E":"P", |
|
u"\u062A":"T", |
|
u"\u0637":"T", |
|
u"\u0679":"T", |
|
u"\u062C":"J", |
|
u"\u0633":"S", |
|
u"\u062B":"S", |
|
u"\u0635":"S", |
|
u"\u0686":"CH", |
|
u"\u062D":"H", |
|
u"\u0647":"H", |
|
u"\u0629":"H", |
|
u"\u06DF":"H", |
|
u"\u062E":"KH", |
|
u"\u062F":"D", |
|
u"\u0688":"D", |
|
u"\u0630":"Z", |
|
u"\u0632":"Z", |
|
u"\u0636":"Z", |
|
u"\u0638":"Z", |
|
u"\u068E":"Z", |
|
u"\u0631":"R", |
|
u"\u0691":"R", |
|
u"\u0634":"SH", |
|
u"\u063A":"GH", |
|
u"\u0641":"F", |
|
u"\u06A9":"K", |
|
u"\u0642":"K", |
|
u"\u06AF":"G", |
|
u"\u0644":"L", |
|
u"\u0645":"M", |
|
u"\u0646":"N", |
|
u"\u06BA":"N", |
|
u"\u0648":"O", |
|
u"\u0649":"Y", |
|
u"\u0626":"Y", |
|
u"\u06CC":"Y", |
|
u"\u06D2":"E", |
|
u"\u06C1":"H", |
|
u"\u064A":"E" , |
|
u"\u06C2":"AH" , |
|
u"\u06BE":"H" , |
|
u"\u0639":"A" , |
|
u"\u0643":"K" , |
|
u"\u0621":"A", |
|
u"\u0624":"O", |
|
u"\u060C":"" |
|
} |
|
|
|
def transString(string, reverse=0): |
|
"""Given a Unicode string, transliterate into Buckwalter. To go from |
|
Buckwalter back to Unicode, set reverse=1""" |
|
for k, v in buck2uni.items(): |
|
if not reverse: |
|
string = string.replace(k, v) |
|
else: |
|
string = string.replace(v, k) |
|
return string |
|
|
|
|
|
def generate_audio(text): |
|
|
|
roman_urdu = transString(text) |
|
|
|
|
|
inputs = processor(text=roman_urdu, return_tensors="pt", type = "numpy") |
|
|
|
|
|
speaker_embeddings = torch.tensor(np.load("speaker_embeddings.npy")) |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
|
|
return speech |
|
|
|
def text_to_speech(text): |
|
|
|
audio_output = generate_audio(text) |
|
|
|
output_path = "output.wav" |
|
sf.write(output_path, audio_output.numpy(), 16000, "PCM_16") |
|
|
|
return output_path |
|
|
|
|
|
examples = [ |
|
['میں ٹھیک ہوں، شکریہ! اور آپ؟'], |
|
['آپ سَے ملکر خوشی ہوًی!'], |
|
] |
|
|
|
|
|
interface = gr.Interface(fn=text_to_speech, inputs="text", outputs="audio", verbose = True, title="Urdu TTS", |
|
description = "A simple Urdu Text to Speech Application. It is not by any means perfect and will not work for all text. You can sometimes expect it to generate random noise on an input of your choice. Right now it works successfully on very basic urdu text, such the ones in the example.", examples = examples) |
|
interface.launch() |