ppo-BipedalWalker-v3 / config.json
Theaveas's picture
Upload PPO BipedalWalker trained model
142b087
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x158519c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x158519ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x158519d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x158519dc0>", "_build": "<function ActorCriticPolicy._build at 0x158519e50>", "forward": "<function ActorCriticPolicy.forward at 0x158519ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x158519f70>", "_predict": "<function ActorCriticPolicy._predict at 0x158520040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1585200d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x158520160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1585201f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15851cec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 600000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651839607.906576, "learning_rate": 0.0003, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.401984, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR6ta0lEGckCUhpRSlIwBbJRNfQSMAXSUR0BuSYN/e+EidX2UKGgGaAloD0MI2safqGyxcUCUhpRSlGgVTdgEaBZHQG5TbBGhEjR1fZQoaAZoCWgPQwiUg9kEmLxxQJSGlFKUaBVNtgRoFkdAbmjxGUfPonV9lChoBmgJaA9DCHk+A+rNSA7AlIaUUpRoFU3dAWgWR0BubMyHmA9WdX2UKGgGaAloD0MIhq5EoDr4cUCUhpRSlGgVTaQEaBZHQG6CbWEsasJ1fZQoaAZoCWgPQwgaho+IKY5xQJSGlFKUaBVN3ARoFkdAboxO/tY0VXV9lChoBmgJaA9DCIQOuoQDyXFAlIaUUpRoFU2oBGgWR0Buol9Wp6yCdX2UKGgGaAloD0MIDM11GulpcUCUhpRSlGgVTScFaBZHQG65Oy3Td+J1fZQoaAZoCWgPQwi0Vx8PPd5xQJSGlFKUaBVNpwRoFkdAbsKm1IAfdXV9lChoBmgJaA9DCMDo8uZwEUtAlIaUUpRoFU2pAmgWR0Bu1CErXlKcdX2UKGgGaAloD0MI6L8Hrx3tcUCUhpRSlGgVTaUEaBZHQG7dh1DBuXN1fZQoaAZoCWgPQwg5ZAPp4v5xQJSGlFKUaBVNfgRoFkdAbvXwZOzpo3V9lChoBmgJaA9DCJRoyeOp1XFAlIaUUpRoFU3SBGgWR0BvAJx3mmtRdX2UKGgGaAloD0MI+PwwQnhJVECUhpRSlGgVTUEDaBZHQG8UJz90ihZ1fZQoaAZoCWgPQwgjvD0IwfNxQJSGlFKUaBVNoARoFkdAbx3jLB9Cu3V9lChoBmgJaA9DCLh3DfrSaVpAlIaUUpRoFU1eA2gWR0BvNNN1yNn5dX2UKGgGaAloD0MIh29h3XioVsCUhpRSlGgVS4ZoFkdAbzXrPdEb53V9lChoBmgJaA9DCLpNuFem/HFAlIaUUpRoFU2EBGgWR0BvP07ZFocrdX2UKGgGaAloD0MIzas6qwXOcUCUhpRSlGgVTbkEaBZHQG9WexfOUt91fZQoaAZoCWgPQwi5wyYyc6E5QJSGlFKUaBVNXQJoFkdAb1t889wFT3V9lChoBmgJaA9DCO7sKw+S4HFAlIaUUpRoFU2nBGgWR0Bvcm+0w8GLdX2UKGgGaAloD0MIWDz1SEO3cUCUhpRSlGgVTc8EaBZHQG98Z2hZha11fZQoaAZoCWgPQwiKP4o6M/9xQJSGlFKUaBVNewRoFkdAb5SbuMMqjXV9lChoBmgJaA9DCPFG5pG/LnJAlIaUUpRoFU1sBGgWR0BvqvnGKhtcdX2UKGgGaAloD0MIv0UnS624ZUCUhpRSlGgVTWgEaBZHQG+0OPvKEFp1fZQoaAZoCWgPQwibyw2GOlZhQJSGlFKUaBVNAQRoFkdAb8mrjo6jnHV9lChoBmgJaA9DCMmOjUA8IXJAlIaUUpRoFU1oBGgWR0Bv0u4I8hcJdX2UKGgGaAloD0MIXHLcKd0CckCUhpRSlGgVTXgEaBZHQG/qnwXqJMx1fZQoaAZoCWgPQwjU1ohgnCByQJSGlFKUaBVNVwRoFkdAb/Occ2itaXV9lChoBmgJaA9DCFX2XRH8TXJAlIaUUpRoFU1CBGgWR0BwBaHGjsUqdX2UKGgGaAloD0MI9gmgGJm3cUCUhpRSlGgVTdAEaBZHQHAKqpcX3xp1fZQoaAZoCWgPQwijdr8KcBVyQJSGlFKUaBVNVARoFkdAcBUrT6SDAnV9lChoBmgJaA9DCDTaqiSyXzBAlIaUUpRoFU3zAWgWR0BwFyu5jH4odX2UKGgGaAloD0MI/S5szZbCcUCUhpRSlGgVTcQEaBZHQHAiRW5paid1fZQoaAZoCWgPQwjjF15J8jJWQJSGlFKUaBVNSANoFkdAcCWfGuLaVXV9lChoBmgJaA9DCEioGVJFT0PAlIaUUpRoFU1bAWgWR0BwJwGFBY3edX2UKGgGaAloD0MIzGJi83H7cUCUhpRSlGgVTXwEaBZHQHAx2ipNsWR1fZQoaAZoCWgPQwhpigCn96FxQJSGlFKUaBVNzgRoFkdAcD0UVi4J/3V9lChoBmgJaA9DCL72zJKAanFAlIaUUpRoFU0PBWgWR0BwQkLApKBedX2UKGgGaAloD0MIsyYW+ErdcUCUhpRSlGgVTZcEaBZHQHBNJbQkX1t1fZQoaAZoCWgPQwiHvyZr1PBxQJSGlFKUaBVNgQRoFkdAcFHXKr7wa3V9lChoBmgJaA9DCPSltz8XRUlAlIaUUpRoFU2FAmgWR0BwXI/lhgE2dX2UKGgGaAloD0MIFXE6yVYrMcCUhpRSlGgVTQoCaBZHQHBerTlT3qR1fZQoaAZoCWgPQwifPCzUmj47QJSGlFKUaBVNPAJoFkdAcGEFnZkCm3V9lChoBmgJaA9DCGeZRSi2u3FAlIaUUpRoFU22BGgWR0Bwbh2Rq46PdX2UKGgGaAloD0MIFva0wx/wcUCUhpRSlGgVTYEEaBZHQHBy5m/WUbF1fZQoaAZoCWgPQwgaprbUgRNyQJSGlFKUaBVNcQRoFkdAcIAtDD0lJHV9lChoBmgJaA9DCHy1ozhH/05AlIaUUpRoFU3fAmgWR0Bwg68Zk079dX2UKGgGaAloD0MIVaAWg4dCV0CUhpRSlGgVTY8DaBZHQHCP3yEtdzJ1fZQoaAZoCWgPQwirzJTWX9RxQJSGlFKUaBVNtQRoFkdAcJTB7eEZi3V9lChoBmgJaA9DCMRcUrXd1DfAlIaUUpRoFU22AWgWR0BwloDLbHp9dX2UKGgGaAloD0MIm8sNhjqDXcCUhpRSlGgVS2xoFkdAcJbwQ176YXV9lChoBmgJaA9DCAezCTAs3nFAlIaUUpRoFU2rBGgWR0Bwo+JuVHFxdX2UKGgGaAloD0MIrvIEwk4NckCUhpRSlGgVTXIEaBZHQHCxExEfDDV1fZQoaAZoCWgPQwihL739uS5cwJSGlFKUaBVLPWgWR0BwsVckdFOPdX2UKGgGaAloD0MIysABLd3ncUCUhpRSlGgVTasEaBZHQHC2NIsiB5J1fZQoaAZoCWgPQwjOGVHaG/9bwJSGlFKUaBVLYWgWR0Bwtpotcv/SdX2UKGgGaAloD0MIXdxGA3gNckCUhpRSlGgVTYsEaBZHQHDED238XN11fZQoaAZoCWgPQwjBHD1+LwByQJSGlFKUaBVNfQRoFkdAcMnk1uR9w3V9lChoBmgJaA9DCAznGmaoJXJAlIaUUpRoFU1oBGgWR0Bw2isFMZgpdX2UKGgGaAloD0MIQx1WuKUickCUhpRSlGgVTW8EaBZHQHDmKeTV2A51fZQoaAZoCWgPQwjzrQ/rjaJdwJSGlFKUaBVLW2gWR0Bw5oqLCN0edX2UKGgGaAloD0MIVTGVfoLmcUCUhpRSlGgVTbAEaBZHQHDrX5zo2XN1fZQoaAZoCWgPQwgIILWJkxxyQJSGlFKUaBVNhQRoFkdAcPdD2rXDnHV9lChoBmgJaA9DCIyGjEfpOnJAlIaUUpRoFU1PBGgWR0Bw+7rZ8KG+dX2UKGgGaAloD0MI7BLVW8PYcUCUhpRSlGgVTawEaBZHQHEHt1loUSJ1fZQoaAZoCWgPQwiT4Xg+w1ZyQJSGlFKUaBVNMwRoFkdAcQwe9i+cpnV9lChoBmgJaA9DCFg33h2ZQXJAlIaUUpRoFU03BGgWR0BxF90CA+Y/dX2UKGgGaAloD0MIIGCt2jVMYcCUhpRSlGgVS81oFkdAcRitOEdvKnV9lChoBmgJaA9DCDW214Je9XFAlIaUUpRoFU2aBGgWR0BxJlAB1cMWdX2UKGgGaAloD0MI0CaHTzorSkCUhpRSlGgVTcwCaBZHQHEpM+A3DN11fZQoaAZoCWgPQwgkXwmkxJdRwJSGlFKUaBVNDAFoFkdAcSpAWi1zAHV9lChoBmgJaA9DCFtAaD18W0jAlIaUUpRoFU1XAWgWR0BxK53aBZp0dX2UKGgGaAloD0MI4gFlUy7GcUCUhpRSlGgVTdIEaBZHQHE4eCPIXCV1fZQoaAZoCWgPQwhJ93MKMuxxQJSGlFKUaBVNjQRoFkdAcT0joZAIIHV9lChoBmgJaA9DCPPixFc7Oj3AlIaUUpRoFU2bAWgWR0BxRpIg/1QJdX2UKGgGaAloD0MIa54j8l0SOUCUhpRSlGgVTVMCaBZHQHFI9aY/mkp1fZQoaAZoCWgPQwiuSiL7IC5yQJSGlFKUaBVNYARoFkdAcU1zv7WNFXV9lChoBmgJaA9DCF5jl6ieIXJAlIaUUpRoFU1DBGgWR0BxWP3Zf2K3dX2UKGgGaAloD0MIAIv8+qEdckCUhpRSlGgVTX4EaBZHQHFlhqXWvr51fZQoaAZoCWgPQwjk2HqGcAJyQJSGlFKUaBVNXgRoFkdAcWoCBPKuCHV9lChoBmgJaA9DCMYzaOhfDXJAlIaUUpRoFU2aBGgWR0Bxdv0se4kNdX2UKGgGaAloD0MI/plBfGB5WMCUhpRSlGgVS3toFkdAcXd99tuUEHV9lChoBmgJaA9DCI8X0uEhpFPAlIaUUpRoFUvbaBZHQHF4YbGWD6F1fZQoaAZoCWgPQwhJSKRt/NNxQJSGlFKUaBVNsARoFkdAcX0uxKQJX3V9lChoBmgJaA9DCOkN95GbEHJAlIaUUpRoFU1xBGgWR0BxiSQcPvrodX2UKGgGaAloD0MI+FEN+711ckCUhpRSlGgVTSAEaBZHQHGNmAwwj+t1fZQoaAZoCWgPQwgIISBfQlVcQJSGlFKUaBVNIARoFkdAcZjPfbblBHV9lChoBmgJaA9DCGHj+nd92lNAlIaUUpRoFU1bA2gWR0BxnDgMtseodX2UKGgGaAloD0MIEvbtJCLLcUCUhpRSlGgVTcUEaBZHQHGnwqur6tV1fZQoaAZoCWgPQwjltn2P+q5YwJSGlFKUaBVLlWgWR0BxqFkEs8PndX2UKGgGaAloD0MI598u+3U/OECUhpRSlGgVTUMCaBZHQHGqptBOYY11fZQoaAZoCWgPQwj/lZUmZQxyQJSGlFKUaBVNhwRoFkdAcbX1uBMBZXV9lChoBmgJaA9DCIMUPIUcInJAlIaUUpRoFU1lBGgWR0BxupTcZccEdX2UKGgGaAloD0MIfqzgtyGaXsCUhpRSlGgVS3poFkdAccIUwi7kGXV9lChoBmgJaA9DCJZBtcGJT3JAlIaUUpRoFU1FBGgWR0Bxxn5FgDzRdX2UKGgGaAloD0MIcTjzqzlkUcCUhpRSlGgVS+9oFkdAccdxCpm29nV9lChoBmgJaA9DCJEr9SwIVRDAlIaUUpRoFU3EAWgWR0BxyT7di2DydX2UKGgGaAloD0MIWdqpuRxfckCUhpRSlGgVTUEEaBZHQHHUT9GZuyh1fZQoaAZoCWgPQwhYcD/ggUFyQJSGlFKUaBVNVgRoFkdAcdjNATqSo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3410, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}