|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- vivos |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-vivos-asr |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: vivos |
|
type: vivos |
|
config: default |
|
split: None |
|
args: default |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.23381058715355313 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-vivos-asr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3492 |
|
- Wer: 0.2338 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 8.4226 | 2.0548 | 150 | 4.9423 | 1.0 | |
|
| 3.59 | 4.1096 | 300 | 3.6898 | 1.0 | |
|
| 3.4271 | 6.1644 | 450 | 3.5183 | 1.0 | |
|
| 2.6948 | 8.2192 | 600 | 1.2770 | 0.8026 | |
|
| 0.7372 | 10.2740 | 750 | 0.5197 | 0.3625 | |
|
| 0.4012 | 12.3288 | 900 | 0.4108 | 0.2911 | |
|
| 0.2974 | 14.3836 | 1050 | 0.3732 | 0.2604 | |
|
| 0.2737 | 16.4384 | 1200 | 0.3550 | 0.2393 | |
|
| 0.2108 | 18.4932 | 1350 | 0.3565 | 0.2434 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|