wav2vec2-vivos-asr / README.md
Thienpkae's picture
End of training
8d1ae01 verified
|
raw
history blame
2.28 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: wav2vec2-vivos-asr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.23381058715355313

wav2vec2-vivos-asr

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3492
  • Wer: 0.2338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.4226 2.0548 150 4.9423 1.0
3.59 4.1096 300 3.6898 1.0
3.4271 6.1644 450 3.5183 1.0
2.6948 8.2192 600 1.2770 0.8026
0.7372 10.2740 750 0.5197 0.3625
0.4012 12.3288 900 0.4108 0.2911
0.2974 14.3836 1050 0.3732 0.2604
0.2737 16.4384 1200 0.3550 0.2393
0.2108 18.4932 1350 0.3565 0.2434

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1