Edit model card

vit5-base-vietnews-summarization-standardized-color

This model is a fine-tuned version of VietAI/vit5-base-vietnews-summarization on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7799
  • Rouge1: 74.6848
  • Rouge2: 68.6336
  • Rougel: 74.2192
  • Rougelsum: 74.2071
  • Gen Len: 7.0508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 118 0.8194 69.6407 62.7891 69.2092 69.1422 8.786
No log 2.0 236 0.7301 72.6263 66.2139 72.2455 72.2856 7.1843
No log 3.0 354 0.7114 74.5668 68.1982 74.1184 74.1947 6.9979
No log 4.0 472 0.7141 74.484 68.3547 74.0625 74.0382 7.0636
0.7045 5.0 590 0.7091 74.661 68.4421 74.1176 74.1212 7.1398
0.7045 6.0 708 0.7452 75.1264 69.0871 74.5996 74.6391 7.4703
0.7045 7.0 826 0.7496 74.2754 68.0974 73.8278 73.8781 7.0424
0.7045 8.0 944 0.7693 74.1263 67.888 73.7264 73.7286 7.1314
0.2955 9.0 1062 0.7831 74.4148 68.2719 73.9605 73.9679 7.178
0.2955 10.0 1180 0.7799 74.6848 68.6336 74.2192 74.2071 7.0508

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ThuyNT03/vit5-base-vietnews-summarization-standardized-color

Finetuned
(8)
this model