ToastyPigeon's picture
End of training
7fb4344 verified
|
raw
history blame
4.12 kB
---
base_model: unsloth/Meta-Llama-3.1-8B
library_name: peft
license: llama3.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: adventure-nemo-ws
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# python -m axolotl.cli.preprocess adventure-l31.yml
# accelerate launch -m axolotl.cli.train adventure-l31.yml
# python -m axolotl.cli.merge_lora adventure-l31.yml
base_model: unsloth/Meta-Llama-3.1-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
sequence_len: 8192 # 99% vram
bf16: auto
fp16:
tf32: false
flash_attention: true
special_tokens:
# Data
dataset_prepared_path: last_run_prepared
datasets:
- path: ColumbidAI/adventure-8k
type: completion
warmup_steps: 20
shuffle_merged_datasets: true
save_safetensors: true
saves_per_epoch: 4
save_total_limit: 2
# WandB
wandb_project: L31-A
wandb_entity:
# Iterations
num_epochs: 1
# Output
output_dir: ./adventure-command-r-workspace
hub_model_id: ToastyPigeon/adventure-nemo-ws
hub_strategy: "all_checkpoints"
# Sampling
sample_packing: true
pad_to_sequence_len: true
# Batching
gradient_accumulation_steps: 2
micro_batch_size: 8
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: true
#unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# Evaluation
val_set_size: 0.01
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
eval_batch_size: 1
# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.125
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
min_lr: 0.000005
weight_decay: 0.01
max_grad_norm: 20.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
```
</details><br>
# adventure-nemo-ws
This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3893
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2246 | 0.0045 | 1 | 2.4988 |
| 2.1034 | 0.2013 | 45 | 2.4257 |
| 2.2138 | 0.4027 | 90 | 2.4077 |
| 2.1541 | 0.6040 | 135 | 2.3941 |
| 2.0555 | 0.8054 | 180 | 2.3893 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1