Edit model card

robbert0210_lrate2.5b8

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3692
  • Precisions: 0.7993
  • Recall: 0.7287
  • F-measure: 0.7307
  • Accuracy: 0.8915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
No log 1.0 471 0.4360 0.8519 0.6630 0.6789 0.8678
0.6455 2.0 942 0.3692 0.7993 0.7287 0.7307 0.8915
0.3291 3.0 1413 0.3768 0.7658 0.7398 0.7397 0.8986
0.2114 4.0 1884 0.4194 0.7951 0.7452 0.7532 0.9048
0.1457 5.0 2355 0.4626 0.7756 0.7536 0.7620 0.9021
0.0955 6.0 2826 0.5145 0.8075 0.7700 0.7858 0.9048
0.0641 7.0 3297 0.5118 0.8113 0.7997 0.8045 0.9100
0.0484 8.0 3768 0.5204 0.8052 0.7952 0.7995 0.9093

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/robbert0210_lrate2.5b8

Finetuned
(40)
this model