|
--- |
|
tags: |
|
- object-detection |
|
- fire-detection |
|
- smoke-detection |
|
license: apache-2.0 |
|
datasets: |
|
- fire-smoke-dataset |
|
model-index: |
|
- name: YOLOv10-Fire-Smoke-Detection |
|
results: |
|
- task: |
|
type: object-detection |
|
name: Object Detection |
|
dataset: |
|
name: Fire and Smoke Dataset |
|
type: fire-smoke-dataset |
|
metrics: |
|
- type: mAP |
|
value: 0.85 |
|
widget: |
|
- src: >- |
|
https://huggingface.co/TommyNgx/YOLOv10-Fire-and-Smoke-Detection/resolve/main/examples/example1.jpg |
|
example_title: Fire |
|
- src: >- |
|
https://huggingface.co/TommyNgx/YOLOv10-Fire-and-Smoke-Detection/resolve/main/examples/example1.jpg |
|
example_title: Smoke |
|
library_name: pytorch |
|
base_model: |
|
- Ultralytics/YOLO11 |
|
metrics: |
|
- recall |
|
--- |
|
|
|
|
|
# YOLOv10: Real-Time Fire and Smoke Detection |
|
|
|
This repository contains a YOLOv10 model trained for real-time fire and smoke detection. The model uses the Ultralytics YOLO framework to perform object detection with high accuracy and efficiency. Users can adjust the confidence and IoU thresholds for optimal detection results. |
|
|
|
## Model Details |
|
|
|
- **Model Type**: YOLOv8 (adapted for YOLOv10 features) |
|
- **Task**: Object Detection |
|
- **Framework**: PyTorch |
|
- **Input Size**: Adjustable (default: 640x640) |
|
- **Classes Detected**: Fire, Smoke |
|
- **File**: `best.pt` |
|
|
|
## How to Use the Model |
|
|
|
This model is hosted on Hugging Face and can be accessed via the **Inference Widget** or programmatically using the Hugging Face Transformers pipeline. |
|
|
|
### Inference Widget |
|
|
|
Upload an image to the widget below and adjust the following: |
|
- **Confidence Threshold**: Minimum confidence level for predictions (default: 0.25). |
|
- **IoU Threshold**: Minimum IoU level for object matching (default: 0.45). |
|
- **Image Size**: Resize input image (default: 640x640). |
|
|
|
### Usage with Python |
|
|
|
To use the model programmatically: |
|
|
|
```python |
|
import torch |
|
from ultralytics import YOLO |
|
from PIL import Image |
|
|
|
# Load the model |
|
model_path = "pytorch_model.bin" |
|
state_dict = torch.load(model_path, map_location="cpu") |
|
|
|
# Initialize the YOLO model |
|
model = YOLO() # Replace with the correct YOLO class |
|
model.load_state_dict(state_dict) |
|
|
|
# Run inference |
|
image = Image.open("path/to/image.jpg") |
|
results = model.predict(image, conf=0.25, iou=0.45) |
|
results.show() |