|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: Helsinki-NLPopus-mt-tc-big-en-moroccain_dialect |
|
results: [] |
|
pipeline_tag: translation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
<!-- in this model i use transfer learning for translate english to Moroccain dialect (darija). --> |
|
|
|
<!-- about dataset used for training model : I used about 18,000 pairs of English and Moroccain Dialect. --> |
|
|
|
<!-- my model is trained three times, the last being one epoch. --> |
|
|
|
# Helsinki-NLPopus-mt-tc-big-en-moroccain_dialect |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6930 |
|
- Bleu: 50.0607 |
|
- Gen Len: 14.7048 |
|
|
|
## Model description |
|
|
|
MarianConfig { |
|
"_name_or_path": "/content/drive/MyDrive/Colab Notebooks/big_helsinki_eng_dar", |
|
"activation_dropout": 0.0, |
|
"activation_function": "relu", |
|
"architectures": [ |
|
"MarianMTModel" |
|
], |
|
"attention_dropout": 0.0, |
|
"bad_words_ids": [ |
|
[ |
|
61246 |
|
] |
|
], |
|
"bos_token_id": 0, |
|
"classifier_dropout": 0.0, |
|
"d_model": 1024, |
|
"decoder_attention_heads": 16, |
|
"decoder_ffn_dim": 4096, |
|
"decoder_layerdrop": 0.0, |
|
"decoder_layers": 6, |
|
"decoder_start_token_id": 61246, |
|
"decoder_vocab_size": 61247, |
|
"dropout": 0.1, |
|
"encoder_attention_heads": 16, |
|
"encoder_ffn_dim": 4096, |
|
"encoder_layerdrop": 0.0, |
|
"encoder_layers": 6, |
|
"eos_token_id": 25897, |
|
"forced_eos_token_id": 25897, |
|
"init_std": 0.02, |
|
"is_encoder_decoder": true, |
|
"max_length": 512, |
|
"max_position_embeddings": 1024, |
|
"model_type": "marian", |
|
"normalize_embedding": false, |
|
"num_beams": 4, |
|
"num_hidden_layers": 6, |
|
"pad_token_id": 61246, |
|
"scale_embedding": true, |
|
"share_encoder_decoder_embeddings": true, |
|
"static_position_embeddings": true, |
|
"torch_dtype": "float32", |
|
"transformers_version": "4.28.0", |
|
"use_cache": true, |
|
"vocab_size": 61247 |
|
} |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['input_ids', 'attention_mask', 'labels'], |
|
num_rows: 15443 |
|
}) |
|
test: Dataset({ |
|
features: ['input_ids', 'attention_mask', 'labels'], |
|
num_rows: 813 |
|
}) |
|
}) |
|
|
|
## Training procedure |
|
|
|
Using transfer learning due to limited data in the Moroccan dialect. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 4000 |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| 0.617 | 1.0 | 1931 | 0.6930 | 50.0607 | 14.7048 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |